

Computer Systems

Author: SKG.

Sept 2017.

Version 1.3.7 Page 2 of 175

Revision History

• Sept 2017 - Version 1.1: First Version

• Jan 2018 – Version 1.2: Reorganized sections

• Mar 2018 – Version 1.3: Integrated more examples

Lecture Overview

Weeks Topics

1 & 2 1. Number Bases

2. Compilation Process Overview

3. Computer Architecture Overview

4. Operating Systems Overview

5. USB Overview

6. C Language

3 & 4 7. Integer Data Representation

8. Floating point Data Representation

5,6 & 7 9. Assembly Language

8 & 9 10. Memory Hierarchy

10 11. Virtual Memory

11 12. Performance

Assignment Overview

Weeks Topics

4 & 5 Thread Creation, Synchronization & Scheduling

7 & 8 Timers & Mutexes

9 Inter-process Communications

Version 1.3.7 Page 3 of 175

Table of Contents.

Week 1: Number bases, Compilation Process, Computer Architecture overview,

Operating System overview and USB Architecture overview. ____________________ 9

Number Bases __ 9
Significance of Base 2, 4, 8 and 16 __ 10
A computer uses base 2 (only knows two things – ‘0’ and a ‘1’) ___________________________ 12

Compilation Process Overview ___ 12

Computer Architecture Overview __ 15

Modern System-on-Chip Architectures __ 19

Operating System Overview ___ 20
The OS Kernel __ 20
The OS File System __ 22
The OS Networking Subsystem ___ 23

USB architecture overview __ 24
Motivation for USB __ 24
USB Terminology ___ 25
USB transfer types ___ 25

Example Problems ___ 25
Problem 1 __ 25
Problem 2 __ 26
Problem 3 __ 26
Problem 4 __ 26

Week 2: C Programming __ 27

Getting familiar with a Development Environment ______________________________ 27
Installing Bash Shell in Win10 ___ 27
Transferring files b/t Windows and Bash __ 29
Your First “C” Program – “Hello World!” __ 30
Debugging a program __ 31

Data Types, Operators and Expressions _______________________________________ 31
Basic Data Types __ 31
User Defined Data Types __ 32
Endianness ___ 35
Arithmetic, Logical and Bitwise operators __ 35
Common Syntax and Expressions ___ 36

Execution Flow Control ___ 38
if - else if - else ___ 38
While, For and Do-While loops ___ 39
Break and Continue __ 41
Switch Statement __ 41
Goto Statements ___ 42

Program Structure ___ 43
Function Calls __ 43
Variable Types and Declarations __ 44
The Preprocessor __ 47

Operators in C __ 48

Version 1.3.7 Page 4 of 175

Pointers in C __ 48
A Pointer Variable ___ 49
Pointer Arithmetic ___ 51
Pointers and Arrays __ 52
Argument Passing by Reference __ 53
Function Pointers __ 54

General Coding guidelines __ 54

Sample Functions in C __ 55
Illustration of C constructs ___ 55
Singly Linked List Implementation __ 58
Bit operations in C ___ 61
Variable Argument Functions __ 63
String Operations __ 65
#pragma pack ___ 67

Example Problems ___ 69
Problem 1 __ 69
Problem 2 __ 69
Problem 3 __ 69
Problem 4 __ 69
Problem 5 __ 70

Week 3: Integer Data Representation & Manipulation ________________________ 71

Big Endian and little endian ___ 71

Boolean Algebra ___ 72
Introduction __ 72
Boolean Arithmetic __ 73

Two’s Complement __ 74

Two’s compliment using Boolean logic gates ____________________________________ 77

Sign bit __ 77

Sign extension ___ 78

Signed vs. Unsigned in C __ 78

Memory address Ranges based on number of address lines _______________________ 79

Size limitations of finite size arithmetic __ 79

Example Problems ___ 79
Problem 1 __ 79
Problem 2 __ 79
Problem 3 __ 80
Problem 4 __ 80
Problem 5 __ 80
Problem 6 __ 80

Week 4: Floating point Data Representation & Manipulation __________________ 81

Rational and Irrational numbers ___ 81

IEEE 754 Floating point representation _______________________________________ 81

Normalized ___ 82

Denormalized ___ 82

Version 1.3.7 Page 5 of 175

Special Cases __ 83

Examples of a Normalized Representation _____________________________________ 83
Example 1: Convert 0.1 to Single precision using long division ____________________________ 83
Example 2: Convert 6.125 to Single precision using easier method _________________________ 84
Example 3: Convert Single precision 0xBFC00000 to a float ______________________________ 85

Adding two floating point numbers ___ 86

Multiplying two floating point numbers _______________________________________ 87

Tool ___ 87

Example of precision issues with floating points _________________________________ 87

Example Problems ___ 88
Problem 1 __ 88
Problem 2 __ 88
Problem 3 __ 88

Week 5: Machine-Level Representation of Code –Part I _______________________ 89

A Historical Perspective __ 89

Program Encodings __ 90

Object and Executable File Formats __ 91

Data Formats ___ 92

Accessing Information __ 92
X64 Registers ___ 92

X64 Addressing Modes ___ 94
Register Addressing Mode ___ 94
Immediate Addressing Mode ___ 94
Direct Addressing Mode __ 94
Register Indirect Addressing Mode __ 95
Register Indirect Indexed Addressing Mode ___ 95

Data Movement Instructions ___ 96

Arithmetic and Logical Operations ___ 96
Three kinds of shift Operations – logical, Arithmetic, Rotate ______________________________ 97
Special Arithmetic Operations __ 97

Your First Computer Program – “Hello World!” _______________________________ 98
Assembly Sample 1 __ 98

Debugging a program __ 99

Interacting with the User ___ 100
Assembly Sample 2 ___ 101

Control operations __ 102
Unconditional Jumps (JMP)___ 102
Assembly Sample 3 ___ 102
Compare (CMP) and test (test) Instructions ___ 104
Zero or Equality Jumps (JZ, JE, JNZ, JNE) ___ 105
Assembly Sample 4 ___ 105
Unsigned Jumps (JA, JAE, JB, JBE) __ 106
Assembly Sample 5 ___ 107
Signed Jumps (JG, JGE, JL, JLE) __ 108

Version 1.3.7 Page 6 of 175

Assembly Sample 6 ___ 108
Other Jumps ___ 109
Assembly Sample 7 ___ 110
Basic Loop __ 111
Assembly Sample 8 ___ 111
Other Loops (LoopE, LoopZ, LoopNE, LoopNZ) ______________________________________ 112
Using the –fstack-protector-all option ___ 112

Week 6: Machine-Level Representation of Code –Part 2 _____________________ 114

Procedures __ 114
Control Transfer __ 114
Data Transfer __ 116
Memory Allocation ___ 117

Heterogeneous Data Structures ___ 120
Structures ___ 120
Unions ___ 120

Mid-term __ 122

Week 7: Machine-Level Representation of Code –Part 3 _____________________ 123

Combining Control and Data in Machine-Level Programs _______________________ 123
Understanding pointers __ 123
Using the GDB debugger ___ 123
Thwarting Buffer Overflow Attacks __ 125
Supporting Variable-size Stack frames __ 130

Floating-Point Code ___ 131
Floating point Evolution ___ 131
Floating point Registers __ 131
Floating point Instructions __ 133
Floating point function arguments __ 134
Floating point constants __ 134
Floating Point Example code __ 134

Week 8: The Memory Hierarchy – Part 1 __________________________________ 136

Storage Technologies __ 136
Random Access Memory ___ 136
Disks Storage __ 141
Solid State Disks ___ 143

Locality ___ 143

The Memory Hierarchy __ 144

Cache Memories __ 145
Direct-Mapped Caches ___ 148
Set Associative Caches __ 148
Fully Associated Caches ___ 148
Cache Associativity summarized ___ 148
Issues with Write ___ 149
Anatomy of a Real Cache Hierarchy __ 149
Performance impact of Cache Parameters __ 149

Week 9: The Memory Hierarchy – Part 2 __________________________________ 151

Writing Cache-Friendly Code ___ 151

Version 1.3.7 Page 7 of 175

Impact of Caches on Program Performance ___________________________________ 152

Example problems __ 153
Problem 1 ___ 153

Week 10: Virtual Memory __ 155

Physical and Virtual Addressing __ 155

VM as a Tool for Caching __ 156
Page Tables ___ 156
Page Hits ___ 156
Page Faults __ 157
Allocating Pages ___ 157

VM as a Tool for Uniform Address Space _____________________________________ 157

VM as a Tool for Memory Protection __ 158
Address Translation ___ 158
Multi-Level Page Tables ___ 159
Speeding Up Address Translation with a TLB __ 161
TLBs in the context of multilevel Page Tables ___ 164
Locality to the Rescue again___ 164
Integrating Caches and VM ___ 164

Summary of Cache Look-up ___ 164
General Cache Look-up steps __ 164
Page Table look-up steps ___ 164
MMU Cache Look-up steps ___ 165

Linux Process Address space ___ 166

Memory Mapping ___ 166
Shared Objects Revisited ___ 167
The fork Function Revisited ___ 167
The execve Function Revisited ___ 168
User-Level Memory Mapping with the mmap Function _________________________________ 168

Dynamic Memory Allocation __ 169
Allocator Requirements and Goals ___ 169
Fragmentation ___ 169
Implicit Free Lists ___ 170
Placing Allocated Blocks __ 170
Splitting Free Blocks ___ 170
Getting Additional Heap Memory __ 170
Coalescing Free Blocks ___ 170
Coalescing with Boundary Tags __ 170

Garbage Collection __ 171

Common Memory-related Bugs __ 171

Example problems __ 172
Problem 1 ___ 172
Problem 2 ___ 173

Week 11: Optimizing Program Performance _______________________________ 175

Justification and methods for Program optimization ____________________________ 175

Version 1.3.7 Page 8 of 175

Processor Architecture Details __ 175

Version 1.3.7 Page 9 of 175

Week 1: Number bases, Compilation Process, Computer
Architecture overview, Operating System overview and
USB Architecture overview.

Number Bases

In the diagram below how many “X’s” are there?

X X X X X X X X X X X X XX X

X X X

If you count in Decimal, you will probably start by counting 1, 2, 3 and so on and come up with an answer
of 18. You used a series of unique symbols while counting from 1 to 9, but when you got to the X after the
9th X, you decided it was “10”. You didn’t come up with a unique symbol for the 10th X, but instead
decided to call it one full set with a remainder of 0. Then when you counted the next X after the 10th, you
call it “11” or one full set with a remainder of 1. Finally when you finish counting all of them, you say it is
one full set with a remainder of 8.

Let us try to understand the operation of counting a little better.

Every time we run out of a unique symbol we add 1 to the digit on the left. So what happens when we run
out of unique symbols in the digit to the left of the first digit? We add a 3rd digit to the left of the 2nd
digit and so on.

The first digit (or the right most digit) also referred to as the “least significant digit” and has a weight
factor of “1”. In other words, the number in the least significant digit must be multiplied by “1” to get the
total number of elements represented by that digit.

The second digit from the left has a weight factor of 10. In other words, the 2nd digit multiplied by “10”
gives us the total number of elements represented by that digit.

Similarly the total number of elements represented by the third digits can be calculated by multiplying its
value with “100”.

The weight associated with any particular digit is 10 to the power of the position of the digit (also written
as 10N, where N is the position). The sign “18” implies (1 x 101) + (8 x 100). The least significant digit has a
position of “0” and the next digit to the left of it has a position of “1” and so on. This way of defining a full
set as ten elements is referred to as the base 10 arithmetic.

The Base of a Number system defines the number of unique digits available in that number system. In
Base 10 (also referred to as Decimal), we have 10 unique digits (0 through 9). Similarly in Base 16 we have
16 unique digits (0 through 9 and A through F). Base 16 is also referred to as Hexadecimal or Hex for
short. In Base 2 we have 2 unique digits (0 and 1).

To convert from any Base to Base 10, we give a weight to each digit in the number based on the Base
raised to a power that represents the index of that digit. Eg. Given a number 12 in Hex, we can convert
that to Decimal as follows:

Version 1.3.7 Page 10 of 175

 (1 x 161) + (2 x 160) = 16 + 2 = 18

Conversely, to convert a number from Decimal to any other Base, we divide the number continually by
the Base we want to convert to and keep a record of the remainder in each division. Eg. Given a number
18 in Decimal, we can convert that to Hex as follows:

 18 / 16 = 1 remainder 2

1 / 16 = 0 remainder 1

Writing out the remainders from the last to the first, we get 12 in Hex. Intuitively, what we accomplish by
this Division-Remainder sequence is that we find a digit within the allowed digits for a given Base after we
subtract a multiple of full sets in that Base.

Significance of Base 2, 4, 8 and 16

What if we had only 8 unique symbols? These symbols will be 0,1,2,3,4,5,6,7. If we counted the X’s again,
we will say we have 2 full sets with a remainder of 2 or 22. This is defined as base 8 arithmetic. In base 8,
the sign “22” implies (2 x 81) + (2 x 80). So the weight associated with any particular digit is 8 to the power
of the position of the digit. Note that the position of the digit is always counted (starting at zero) from
right to left.

What if we had only 4 unique symbols? These symbols will be 0,1,2,3. Then if we could count the X’s
again, we will say we have 100 full sets with a remainder of 2 or 102. This is defined as base 4 arithmetic.
In base 4, the sign “102” implies (1 x 42) + (0 x 41) + (2 x 40). So the weight associated with any particular
digit is 4 to the power of the position of the digit.

What if we had only 2 unique symbols? These symbols will be 0,1. Then if we could count the X’s again,
we will say we have 1,001 full sets, with a remainder of 0 or 10010. This is defined as base 2 arithmetic. In
base 2, the sign “10010” implies (1 x 24) + (0 x 23) + (0 x 22) + (1 x 21) + (0 x 20). So the weight associated
with any particular digit is 2 to the power of the position of the digit.

What if we had 16 unique symbols? These symbols will be 0,12,3,4,5,6,7,8,9,A,B,C,D,E,F. Then if we could
count the X’s again, we will say we have 1 full set, with a remainder of 2 or 12. This is defined as base 16
arithmetic. In base 16, the sign “12” implies (1 x 161) + (2 x 160). So the weight associated with any
particular digit is 16 to the power of the position of the digit.

If a digital computer were to count the Xs above, it would come up with an answer of 10010, which is the
same result we got when counting in base 2. Digital computers perform all their operation in binary (or
base 2) arithmetic. Hence becoming proficient with binary arithmetic is very useful in understanding and
troubleshooting digital computer behavior.

Converting a number from one base to another involves the successive division method and the weighted
multiplication method as discussed previously.

However to covert numbers between bases 2, 4, 8 or 16 there is an easier technique. Learning this
technique will prove very useful when dealing with digital computers.

Any number represented in binary can be converted to base 4 by dealing with 2 digits at a time starting
from the right. For example to convert 10010 in base 2 to base 4, we can first convert the least significant
2 digits, which are “10”. This is a 2 in binary and 2 is a unique digit available in base 4. So the least

Version 1.3.7 Page 11 of 175

significant 2 digits can be written as “2” in base 4. The next 2 digits are “00”. This is a ‘0” in base 2 and “0”
is a unique digit available in base 4. So these two digits can be written as “0” in base 4. The next two digits
are “01” (note adding a zero to the left has no value) and that is “1” in base 2 and 4. So the number 10010
in base 2 can be translated visually to 102 in base 4

01 00 10 (base 2) = 1 0 2 (base 4)

Similarly taking 3 binary digits at a time, we can visually convert binary numbers into octal (base 8)
numbers.

010 010 (base 2) = 2 2 (base 8)

And taking 4 binary digits at a time, we can visually convert binary numbers into hexadecimal (base 16)
numbers.

0001 0010 (base 2) = 1 2 (base 16)

One of the problems with binary numbers is that it can be very cumbersome to deal with, since even a
relatively small number like 18 in base 10 will require 5 digits to represent it in binary. So using a higher
base can prove very efficient in presentation. But there isn’t an easy visual way to convert from binary to
base 10. Hence most computer professionals prefer to use base 16 or hexadecimal representation when
presenting numbers.

The visual method of conversion can also be used to go from base 4, 8 or 16 to binary. The operation is
exactly the inverse of the method used above to go from binary to a higher base.

For example to convert a hexadecimal value of “12F” into binary, we take each digit and represent it by 4
binary digits. An “F” in base 16 is the same as “1111” in binary. A “2” in base 16 is the same as “0010” in
binary. And a “1” in base 16 is the same as “0001” in binary.

1 2 F (base 16) = 0001 0010 1111 (base 2)

Learning the binary equivalent for any hexadecimal digit will prove very handy and so I have provided the
conversions below. Also note that a base 16 representation is often prefixed with a “0x”. So the number
“12F” in base 16 will be written as 0x12F. A binary number is often denoted by a terminating “b”. So
10010 in base 2 will be written as 10010b.

Hexadecimal Binary Hexadecimal Binary Hexadecimal Binary

0x0 0000b 0x6 0110b 0xC 1100b

0x1 0001b 0x7 0111b 0xD 1101b

0x2 0010b 0x8 1000b 0xE 1110b

0x3 0011b 0x9 1001b 0xF 1111b

0x4 0100b 0xA 1010b

0x5 0101b 0xB 1011b

Note that we refer to 4 bits as a “nibble”, 8 bits as a “byte”, 16 bits as a “word”, 32 bits as a “double
word”, 64 bits as a “quad word” and 128 bits as a “double quad word”.

Version 1.3.7 Page 12 of 175

A computer uses base 2 (only knows two things – ‘0’ and a ‘1’)

Memory is the basis of all knowledge and action. If you have no memory, you can’t store information. If
you can’t store information, you can’t analyze information. If you can’t analyze information, you can’t act
on information. Hence memory is the basis of all knowledge and action.

A computer only recognizes two unique pieces of information. We refer to this as a “bit” that can assume
the values of “0” and a “1”. In reality, these two possible values of a “bit” translate to two levels of an
electrical signal. Conceptually, the different technologies available to implement a bit are referred to as a
“Memory cell”. The most common technologies that implement a memory cell include a DRAM and
SRAM. More details can be found here.

Compilation Process Overview

When we write code in a high level language, we are simply writing characters into an editor. If we open

our source file in a binary editor we will see unique binary numbers representing each character. Each

letter in the Alphabet is encoded into a unique binary number defined by the ASCII standard. You can find

the ASCII code here.

Our Source Code in a file is not something the computer understands. We have to convert the source

code into instructions that the computer recognizes. This is done by the compilation process. The

compilation process involves the following steps:

1. A “Pre-Processor” phase that fulfills some of the directives in our source file like #include

2. A “Compiler” phase that converts the code to Assembly instructions

3. An “Assembler” phase that coverts the Assembly to a relocatable object

4. A “Linker” phase that combines multiple relocatable objects into a single executable file

Below is an example of a simple “C” source file…

Pre-processor

Source

file

Assembly

Code
Compiler

Directives

resolved

Assembler
Executable

Linker

Relocatable

Object

https://en.wikipedia.org/wiki/Memory_cell_(binary)
http://www.asciitable.com/

Version 1.3.7 Page 13 of 175

#include <stdio.h>

Note that “#include” directive is a directive to the preprocessor to include the “stdio.h” file into this file

before getting the C Compiler to compile the file. So the preprocessor does change the file you created,

though those changes are only visible to the compiler.

I use the “gcc” command below to go through the entire compilation process below. I then load this file in

the debugger to demonstrate how the executable looks like (Recall we discussed how you can break the

compilation process using different flags like the “-c” option)…

Then I set a breakpoint at the start of the main function and run to the breakpoint …

Version 1.3.7 Page 14 of 175

Now I display the bytes at that location in memory…

What you are looking at is Machine Code. But how can you really understand what these codes mean?

The debugger has a useful option called “dissemble /r” that will show you both the machine code (Op

Code + Data) and Assembly code side by side. Each of those Assembly instructions are known as

mnemonics. The machine code for the “push %rbp” mnemonic in the x64 architecture is “55”. Some of

the x64 opcode are documented here. Intel’s official documentation is here. X64 instruction encoding is

provided here. Assembly language is essentially a human-readable form of machine code. Disassembling a

program translates it from Machine code to Aassembly code. We will discuss this in more details when we

study Assembly coding.

http://ref.x86asm.net/geek64.html#x48
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
http://wiki.osdev.org/X86-64_Instruction_Encoding

Version 1.3.7 Page 15 of 175

Computer Architecture Overview

Once we compile a program and let the linker store the executable in a file system with a particular name,

we can run the program at any later time. The output of the linker is a file that is stored in some

persistant strorage available to the computer system (usually the HardDisk).

When we run the program, a software component known as the “loader” takes the file from the file

system (in the HardDisk), reads the metadata in the file to determine the type of executable etc., and

then loads the computer instructions in the executable into the main memory of the computer system at

a particular memory address. It does this, because the main memory is substantially faster than the

HardDisk.

The loader then sets a particular register in the CPU known as the Instruction Pointer (IP) Register to point

to the starting address of the instructions the loader had just loaded in memory.

Once the IP Register is set, the CPU will “fetch” the instruction at this address, “execute” it, and

increment the IP Register to the next instruction to fetch. The process will continue until one of two

possible things happen:

1) The CPU is interrupted by some other activity on the system

2) One of the instructions yields the CPU

Pre-processor

Source

file

Assembly

Code
Compiler

Directives

resolved

Assembler
Machine

Code

Version 1.3.7 Page 16 of 175

Fig 1: General Computer Architecture

CPU /

Registers

Math

Co-processor

DRAM

Main Memory

SRAM

Cache Memory

Video

Processor

Video

Memory

BIOS Firmware for PC /

SOC firmware

Power

on Reset
USB

Bridge

PCI

Bridge

SCSI

Bridge

EISA

Bridge

PCI bus /

Peripherals

SCSI bus /

Peripherals

EISA bus /

Peripherals

USB bus /

Peripherals

Monitor

Local Bus

USB MSD

USB MTP

USB

Mouse/Keyboard

PCI Audio Card

PCI Serial Card

SCSI Hard Disk

SCSI Flash

Clock

Version 1.3.7 Page 17 of 175

Data on a HardDisk is stored on magnetic tracks in a cylindrical platter. Corresponding tracks on each
platter make up a cylinder. The tracks are divided into sectors which represent the smallest addressable
data block on the disk. A sector by default represents 512 bytes, although this can be modified. Each face
of the cylindrical magnetic platter has a head. A sector is addressed by the cylinder, head and sector.
There is often a logical sector number that is a sequential numbering system from 0 to n, where ‘n’
represent the total number of sectors on the disk. For each logical sector, there will be a physical sector
number defined by the cylinder, head and sector.

If main memory is volatile and the Hard Disk is non-volatile, one may ask why we don’t replace the main
memory with a Hard Disk. There are two main reasons why this is not possible – speed and byte
addressability.

Generally speaking, accessing a Hard Disk is about 10,000 times slower than accessing main memory.
Note that from a CPU’s perspective, even accessing the main memory can be a bottleneck. This is the
reason why the CPU maintains caches. Waiting for the Hard Disk can be prohibitively slow for the CPU.
Generally applications will save data in main memory and periodically flush the data in “bursts” onto the
hard disk.

The second reason why a Hard Disk will not replace main memory is because, as we have already
discussed, the smallest block of data that can be addressed by a hard disk is a sector of 512 bytes. The
CPU would require access to individual bytes or words of data.

A Hard Disk always maintains a Table of Contents at a fixed location. The location and format of this Table
of contents will be a function of the file system that the Hard Disk supports. But generally the format of
Table of contents will specify the different sectors where a file resides. Note that a file does not have to
occupy contiguous sectors (and seldom does). As the file grows on the hard disk, it will use up sectors in
different regions of the hard disk.

Fig 2 shows an example of a how a table of contents can keep track of the sectors where a file resides. In
this example there are 8 entries in the Table of Contents.

Fig 2: Hard Disk Table of Contents

First we created “File A” and put it in sector 1.

Then we created File B and put it in sectors 2, 3 and 4. Note the “FFFF” marker in the forth Table of
Contents entry indicates that it is the last sector for File B.

In the meantime, “File A” outgrew sector 1 and next free sector was sector 5. We put a pointer to the 5th
Table of Contents entry in the 1st Table of Contents entry to indicate that the balance of “File A” is now in
sector 5.

Next we create “File C” that takes up sectors 6 and 7.

File A

0005

File B

0003

0004

FFFF

0008 File C

0007

FFFF

FFFF

1 2 3 4

4

5 6 7 8

Version 1.3.7 Page 18 of 175

“File A” outgrows sector 5 and we extend it to the next free sector, which happens to be sector 8.

Note that the sector entries in the Table of Contents refer to “logical” sectors.

When a file is spread over non-contiguous sectors like ‘File A’ in the above example, it is said to be
fragmented.

Over extended use, a Hard Disk can get so fragmented that accessing any single file will require access to
sectors in non-contiguous locations on the disk. This can impact performance as well as the life of the disk
because it requires a lot of mechanical movement of the head on the disk.

To circumvent fragmentation, computer users periodically run a utility to de-fragment their hard disk. A
de-fragmentation utility will try and collate sectors such that files occupy contiguous sectors.

When the CPU wants to fetch an instruction at a particular address in main memory, it first checks if that

location in memory was previously fetched. It does this by first looking for the contents of that address in

the “Cache”. The Cache is usually memory that is accessable faster than the main memory. If the contents

of an address is availble in the cache, the CPU can save substantial time. In general, most modern

computers have multiple levels of cache between the CPU and the Main memory. Each progressive level

is slower but bigger than the previous level. Also, there might be separate Caches for Instructions and

Data referred to as I-Cache and D-Cache respectively.

To fully appreciate the reasons for a computer architecture, we must first appreciate the difference in

processing time for various components in a computer. The time taken by a component to complete is

task is often referred to as “latency”. It is the varying lantencies for the different computer components

that inform computer architecture. The justification for a Cache for example, is based on the fact that

main memory is substantially slower to respond to a fetch request than the Cache.

To transport instructions or data between the memory and the CPU, we need some form of a physical

connection. This type of a connection that allows multiple components to communicate with each other is

referred to as a Bus. Every Bus will be defined by a protocol used to ensure that access to the bus is

arbitrated, so as to avoid collisions. A computer architecture will have multiple Busses. The Local Bus

usually refers to the interconnect between the main memory and the pocessing components of a

computer system.

In addition to the components hanging off the Local Bus, a computer system will require several

peripherals. The bandwidth and throughput requirements of these peripherals will vary substantially.

Over the years, multiple protocols have been defined to accommodate the different demands of the

varying peripherals. Each of these protocols ultimately have to interface with the Local Bus. They do this

via a protocol bridge as shown in Figure 1.

Every computer instruction is designed to achieve some task. Computer Hardware achieves a task by a

combination of logic gates. In general logic gate designs are classified as “combinational” or “sequential”.

The distinction between the two is that combination design output the results as fast as possible after the

input changes. Sequential design on the otherhand, reads the input only on clock edges (rising or falling).

Hence a Clock is fundamental to all Digital Designs. Sequential logic is more determinictic and stable.

Combinational logic is more susceptible to glitches. To avoid these glitches, the output of combinational

Version 1.3.7 Page 19 of 175

logic is often input to sequential logic. For more information refer to the section on “ASIC Design

Considerations” in the “ASICDesign.PDF” in the Reference folder.

The number of clock cycles required to complete a task defines the complexity of the task. In general

there are 2 classifications for Computer systems – RISC and CISC. RISC stands for “Reduced Instruction Set

Computer” and CISC stands for “Complex Instruction Set Computer”. RISC processers usually have simple

instructions which require less clock cycles, while CISC processors have complex instructions that require

more clock cycles.

Modern System-on-Chip Architectures

Most modern computer systems encapsulate individual controller chips and the Central
Processing Unit (CPU) into a single System-On-Chip (SoC). Peripheral to the SoC will be some
persistent storage (Solid State Flash or Magnetic Disks) as well as a Random Access Memory
(RAM) unit. These are designed to be peripheral to the SoC to accommodate the varying size
requirements for varying applications. Depending on the system, there will varying levels of
Cache memory designed to alleviate the latency associated with RAM access.

In general a Power-on-Reset (PoR) line into the SoC will control the boot operation of the
system. The SoC will be hardwired to download an error free guaranteed block from the Flash or
Disk into RAM and set the Instruction Pointer in the CPU to point to its location in RAM. This
initialization code is often referred to as a “Boot Loader”.

CPU/ALU

Nand Flash

Controller (NFC)

USB Host

Controller

Bluetooth

Controller

Wifi

Controller

System-On-Chip

RAM
NAND

FLASH

Address Bus

Data Bus

Version 1.3.7 Page 20 of 175

The Boot Loader is responsible for initializing the hardware (including bit correction information
in the NFC controller) and eventually loading the Operating System (OS) in RAM.

Once the Operating System is loaded, it will generally turn on a Memory Management Unit
(MMU) to allow the use of Virtual Addresses. Once Virtual Addressing is possible, a consistent
and common address space becomes available to all applications. The Operating System is also
responsible for setting up the Interrupt Descriptor table at a predefined location in RAM so the
CPU can service interrupts.

Eventually the OS will start the Scheduler and multiple threads can then share the use of the
CPU usually in a time sliced manner for preemptive Operating Systems.

Operating System Overview

In the previous section we studied the various hardware subsystems in a computer. Ultimately, these
varied subsystems aid in storing, loading and executing software applications and in communication
between other computers.

As you can imagine, even the most rudimentary tasks such as storing an application in a hard disk without
over-writing other applications that are already in the hard disk and then asking the CPU to load an
application from a particular location on the hard disk into RAM can be extremely cumbersome and error
prone. For example, you would probably prefer to identify your application by a name as opposed to the
starting sector of its location in the hard disk. The starting address may change if you move your
application from one hard disk into another. These sorts of difficulties beg for a management utility that
allows a level of translation between what you wish to do and how it needs to be done. A Computer
Operating system is effectively such a manager.

In one sense, the Operating System is just another application which has the responsibility to ensure that
all other applications have regulated and user friendly access to components on the motherboard. The
Operating System is the arbitrator of the Hardware. In one sense, it gives the illusion to each process
that it is the only process!

The OS Kernel

The Kernel is the core of an Operation System. In this section we will walk through some of the common
tasks performed by a kernel. It must be emphasized that there are several nuances that distinguish the
kernels of different operating systems and that the discussion below is of a generic nature to give the
student an appreciation for the considerations involved in kernel design and an introduction to
terminologies.

When a General Purpose Computer is powered up, the CPU is usually hard-wired to load instructions at a
particular memory address, also referred to as the Reset Vector. Usually this address corresponds to some
form of non-volatile Read-Only-Memory (ROM). The motherboard manufacturer would have placed a
special program known as a Boot-Loader at this ROM location.

The Boot Loader is responsible for locating the kernel components of the Operating System in the
Secondary Storage (usually the Hard Disk or Flash memory) and loading it into the Primary memory (main
memory). Once the kernel is loaded into memory, the boot loader asks the kernel to continue with system

Version 1.3.7 Page 21 of 175

initialization. From this point onwards, the kernel is the manager of the computer system. Different
kernels will operate in different ways, but the general responsibilities of a kernel are much the same.

One of the first things the kernel has to do is to load and initialize the display, keyboard and mouse
Drivers. A driver is a specialized piece of software that is designed to interface with peripheral hardware.
The display, keyboard and mouse hardware are tied to one of the I/O bridges on the computer
motherboard. Once the kernel initializes these peripherals, it is able to interact with the user.

The next thing the kernel usually does is to load a “Device Manager” that is responsible for identifying all
the peripheral devices and Buses on the computer system. The kernel then allows the Device Manager to
use the CPU to execute its instructions.

The device manager will then load other operating system components based on the particular hardware
peripherals that are available on a given motherboard. For example, file storage and communications are
some of the most common tasks for a computer. Most motherboards will have dedicated hardware
peripherals for these purposes. The device manager will detect these peripherals and load the
corresponding operating system modules that are responsible for managing these peripherals.

In the case of the various buses on the motherboard, the device manager will load the corresponding
“Bus Drivers”. The bus drivers are responsible for enumerating (identifying who is on the bus) the devices
on their respective buses and loading corresponding operating system components for each of the
devices that is on the bus. In effect, the bus driver becomes the Device Manager for devices on its bus.

Once the Device Manager has loaded all the components necessary for a particular computer system, the
kernel then allows each of the loaded operating system components to use the CPU. The process where
the kernel allows a component to use the CPU is referred to as scheduling.

Finally the kernel loads the Shell and schedules it to run (in other words, allows it to use the CPU). The
shell is the User Interface to the computer system. It is the face of the computer. Think of the Shell as a
special operating system component that is responsible for interacting with the end user.

A software component is usually a set of tasks. For example, the shell is a software component that is
responsible for interacting with the user. At a minimum it will have two tasks – the first to accept input
from the kernel and relay it to the user and the second will be to accept input from the user and relay it to
the kernel. A kernel that allows multiple tasks to co-exist is referred to as a multitasking kernel.

All the software components that are loaded need to access the CPU periodically. The Kernel usually gives
each component a certain amount of time of CPU use and then gives the CPU to another component. The
process where the kernel forces a task to relinquish the use of the CPU is referred to as preemption and a
kernel that operates in this fashion is called a preemptive kernel.

A multitasking kernel is responsible for keeping a list of all the tasks that are running on the system and
scheduling each task as and when required. Some operating systems refer to these tasks as processes or
threads.

Another responsibility of the kernel is to manage the primary memory. Usually the kernel delegates this
to a component called the memory manager that is responsible for allocating and freeing memory that is
required by each task. Most memory managers refer to memory using “virtual” addresses. These
addresses map to physical memory address based on a table known as a “Page Table”. The use of virtual
addresses allows the memory manager to assign more memory to tasks than is physically available in
primary memory. It also allows the using of contiguous virtual addresses even when the physical locations
may not be contiguous. When the memory manager detects that it has run out of physical memory, it will
copy some of the least frequently accessed physical pages into secondary memory and then re-assign

Version 1.3.7 Page 22 of 175

those physical locations to virtual addresses of tasks that are in immediate need of primary memory. This
process by which the memory manager saves the contents of physical memory into secondary memory is
referred to as “Paging-out” memory. The inverse operation where the memory manager copies contents
from secondary memory to primary memory is referred to as “Paging-in” memory. The files in secondary
memory used by the memory manager for this purpose are called the Page Files.

Note that at system startup, the system access physical memory directly using physical addresses.
However at some point in the boot sequence the Kernel will setup the Page Tables and turn on the MMU.
From here on, the system accesses memory by referring to their virtual addresses.

Yet another important task performed by the kernel is Interrupt Servicing. When a CPU is interrupted by
the interrupt controller, the CPU will load instructions from a predefined memory location known as the
Interrupt Vector. The Kernel usually loads the instructions at these interrupt vector locations and hence
controls what happens when a peripheral signals an interrupt.

To summarize, one can think of the Kernel as an operating system component that arbitrates access to
the CPU and the primary memory on the motherboard such that all other software components can
concentrate on their specific tasks without stepping over other tasks that also require access to the CPU
and primary memory.

The OS File System

Most operating system components are designed in a hierarchical architecture. The layers at the bottom
of the hierarchy are responsible for interacting with the hardware while the layers at the top are
responsible for providing a user friendly interface to access the layers at the bottom. The file system
architecture in most operating systems will follow such a scheme.

Fig 3 shows a generic file system architecture. Note that the file system is generally associated with
secondary (non-volatile) memory. As discussed previously, most of these types of memory are block
addressable. Hence, the lowest layer in such a file system is a Block Device Driver. Such a driver is
responsible for reading from and writing to individual sectors on a HardDisk or to blocks in a flash memory
device. The driver is not responsible for keeping track of all the sectors used by a particular file. That
information is maintained at higher layers. The block driver allows higher layers to store and retrieve
information at a certain location in the secondary storage device, remaining mostly oblivious to the
greater relevance of the information being stored or retrieved.

Most block devices accommodate the notion of Partitions within a block device. Partitions are
mechanisms to divide a large block device into smaller, more manageable sections. These sections may be
used for specific purposes. The Partition Manager layer is responsible for providing a layer of abstraction
between higher layers that would refer to data in a particular partition and the block driver that does not
necessarily view the block device as divided into partitions.

Version 1.3.7 Page 23 of 175

Fig 3: File System Hierarchy

Within each partition, data will be stored in a particular format. This format dictates the type of File
System Driver that is used to manage the data in that partition. One of the most common file systems is
the File Allocation Table (FAT) file system. It is at the file system driver layer that the file names and
locations of each file’s contents are maintained.

The topmost layer is the File Manager. This layer is a presentation layer. It allows users to view all the
available files on the computer without distinguishing the files based on the file system, partition or block
device that is used to store the contents of a file.

The OS Networking Subsystem

The Networking subsystem is perhaps one of the most hierarchical and standardized components of any
Operating system. The most compelling incentive for this is that to be able to communicate with other
computers, there must be an agreement among Operating System vendors as to the format of the Control
and Data packets that will be exchanged between computers. These agreements are often referred to as
Communication Protocols and are published standards that are available to all Operating System vendors.
The networking subsystem in a general purpose Operating System is almost always designed with the
intension of accommodating multiple communication protocols.

Block Driver 1 Block Driver 2 Block Driver N

Partition Driver 1 Partition Driver 2 Partition Driver N

File System Driver 1 File System Driver 2 File System Driver N

File Manager

Version 1.3.7 Page 24 of 175

Fig 4: 7-Layer OSI Model

The Open System Interconnect (OSI) model is a recommendation by the International Organization for
Standardization (ISO) on how to architect the layers in a networking subsystem. It discusses a 7-layer
model as shown in Fig 4.

Each of the layers in the OSI model is governed by the various communication protocols available at that
layer. For example the most common Data Link Layer protocol in use today is the Ethernet protocol. The
most common Network layer protocol is the Internet Protocol (IP) and the most common Transport layer
protocol is the Transport Control Protocol (TCP).

The layers above the Transport layer are less rigidly adhered to by operating system vendors. This is partly
because the OSI model was introduced long after the TCP/IP protocol became ubiquitous and already
existing installations never re-architected their networking subsystem to conform to the OSI model.

The general thrust of the 7-layer model is that changes at the lower layers do not have to impact end
users and applications dependent on them, because end users and applications don’t talk to them
directly.

USB architecture overview

Motivation for USB

As the Personal Computer (PC) revolution was underway in the nineties, it became obvious that some
standardization was required in interfacing with computer peripherals. Up until then, each peripheral had
its own physical interface. Most computers provided for a serial port, a parallel port, a keyboard port and
a mouse port. The only extension capability to add a different physical port was to use an ISA or PCI card
that attached to the ISA or PCI bus on the motherboard and exposed its own port. Graphics cards were a

Application Layer This layer is intended to assist applications and end-users by providing easy to

use interfaces to perform communication tasks.

Presentation Layer This layer is intended to abstract the differences in data format and

representation (eg. Encryption) used by other layers beneath it.

Session Layer This layer is responsible for determining the life of the network connections

between applications and end users.

Transport Layer This layer is responsible for the transport of information without errors and for

providing throttling mechanisms to accommodate data buffer limitations.

Network Layer This layer is responsible for routing and sequencing of data.

Data Link Layer This layer controls how and when access to the physical layer can be gotten.

Physical Layer This layer represents the physical media used from transmission of data.

Version 1.3.7 Page 25 of 175

common example of this and they provided another port for the display monitor. Any data acquisition
peripheral would similarly attach to the ISA or PCI bus. However, ISA and PCI slots were also limited and
not easily accessible to end users. USB was the architecture that resolved this limitation by coming up
with a standardized hot-pluggable physical interface (standard physical cable) that accomodated varying
bandwidth requirements of different peripherals.

USB Terminology

As with any subject, nomenclature can be a stumbling block until it is understood. Once understood
however, it adds substantially to the ease of conveying ideas more precisely. The following are some of the
common terminologies used in USB discussions:

• Host – Master on USB bus. There can only be one Host in a USB bus.

• Function – Slave on USB bus. There can be a maximum of 127 function devices on a USB bus.

• Hub – Allows for additional ports on the USB bus. The Host exposes a “root” hub with a limited
number of ports.

• Device – The term “USB device” is used to refer to either a function or a hub.

• Compound Device – A single physical device that has multiple functions attached to an internal
hub.

• Composite Device – A single physical device that has multiple functions, any one or more of
which may be active. These functions are not attached to an internal hub, instead enumerate
separately over a single port.

USB transfer types

The brilliance of USB was not just that it addressed the standardization of physical ports, it also leveraged
the knowledge of the bandwidth demands of varying peripherals and did a reasonable job of accommodating
most peripherals in common use. The different USB transfer types to accommodate different bandwidths
required by peripherals are:

• Control Transfer: Used for enumeration and configuration

• Interrupt Transfer: Ideal for fast reaction (low latency) and small amount of data (eg. Mouse).

• Bulk Transfer: Ideal for large data without time restrictions (eg. files in a mass storage device)

• Isochronous Transfer: Ideal for large data with time restrictions (eg. Music)

Example Problems

Problem 1
Consider the following C program:

int main()
{
 MyTestFunction(10, 15, 20);
}

When I compile this program, I get the following

Version 1.3.7 Page 26 of 175

warning: implicit declaration of function ‘MyTestFunction’ [-
Wimplicit-function-declaration]

What is wrong with my program?

Problem 2

Complete the following table, converting the binary numbers to decimal numbers and
decimal numbers to binary.

Binary Decimal

0100 1100

1111 1110

1000 0011

 127

 254

 32,768

Problem 3

Convert the following numbers from hexadecimal to binary and to decimal

Hexadecimal Binary Decimal

0x0F

0x2C

0x1A

0xB4

Problem 4

Write an octal number which has the decimal value 501

Version 1.3.7 Page 27 of 175

Week 2: C Programming

What must have been obvious after looking at the x86 Assembler earlier is that writing assembly instructions
to accomplish even the most basic of tasks is intricate and laborious, requiring a certain level of dedication
to detail that can only be expected from the most diehard enthusiasts. While the Assembler abstracts us
from the binary codes by providing mnemonics such as “MOV” and “ADD”, it does little else in shielding the
programmer from individual instructions executed by the CPU.

Programming a computer to perform a certain task could be accomplished with substantially greater ease if
we had a way to define logic operations without having to worry about how the CPU could accomplish these
operations. Things as simple as assigning a value to a variable without having to worry about which register
to first put the value in and then which instruction would allow us to move the register value to a memory
location, can save a substantial amount of effort and consequently allow the programmer to better focus on
the task that needs to be accomplished as opposed to the implementation details in hardware. This was the
incentive to pursue higher level programming languages.

At the heart of a high level language is a compiler or an interpreter that translates high level code into
machine level instructions. The difference between a complied language and an interpreted language is
essentially the time when the translation to machine level code occurs. A compiled language translates the
code ahead of execution, thus allowing it the luxury of greater optimizations. An interpreted language does
the translation at execution time and hence is generally less optimized.

The sixties and the early seventies were the period when the groundbreaking work in high level languages
began. Among the earliest of these languages was one called “TMG” by R. M. McClure. This was followed
by a language called “B” by Ken Thompson, which in turn was followed by the “C” programming language
by Dennis Ritchie. The “C” programming language would turn out to be the most popular programming
language for over a quarter century because it offered the ability to define high level logic operations without
substantially compromising the ability to perform bit-wise and register level operations.

This flexibility was crucial in the use of the “C” language in writing operating systems, a layer that abstracts
hardware platforms from application programs. Interfacing with operating systems written in “C” was more
natural for applications that were themselves written in “C”. Thus the “C” programming language became the
de facto standard in high level languages in the latter part of the twentieth century.

As with any programming language, “C” has a number of constructs and key words used to define
operations. With the “C” language there is almost a one-to-one mapping between assembler level constructs
and “C” constructs. In addition “C” has a very limited set of key words, making it very easy to learn and use.

Getting familiar with a Development Environment

Installing Bash Shell in Win10

1. Open the Settings Applet from the Start button
2. Click on “Update & Security”
3. Select “For developers” on the left
4. Select “Developer mode as shown below

Version 1.3.7 Page 28 of 175

5. Click on “Yes” when asked to confirm (Reboot system after installation completes)

6. Open Control Panel and select the Applet to “Turn on windows features on or off”

7. Select the Windows Subsystem for Linux (beta) feature and click Ok.

Version 1.3.7 Page 29 of 175

8. After the components are installed, Reboot the machine.
9. Once reboot completes, search for “bash.exe” and run it.
10. On the bash command prompt, type “y” and Enter to download and install Bash

11. You will be prompted to create a default user account.
12. Once you create a user account and password, close and reopen the bash command window.

Transferring files b/t Windows and Bash

Files stored in your Bash environment conform to the Linux file system and should not be altered from the
Windows environment. This Blog provides details on this issue.

The easiest way to transfer files back and forth between your Windows and Bash environment is as follows:

1) Create a folder in your local Windows drive to store your files for this course (I use
C:\WWU\CSCI247)

https://blogs.msdn.microsoft.com/commandline/2016/11/17/do-not-change-linux-files-using-windows-apps-and-tools/

Version 1.3.7 Page 30 of 175

2) Create subfolders in that directory for your Labs, and assignments.
3) Create matching folders in your Bash Environment under your home directory
4) From your Bash Environment you can now access the Windows folder by pre-pending the “/mnt/c/”

path.

See example below on how I copy a file called “Lab1.c” to and from Bash

Copying files to Bash

In Windows put the file in C:\CSCI247\Labs\Lab1\Lab1.c

In Bash do the following...

cd ~
cd CSCI247/Labs/Lab1
cp /mnt/c/CSCI247/Lab1/Lab1.c .

copying files from Bash

 cd ~
 cd CSCI247/Labs/Lab1
 cp Lab1.c /mnt/c/CSCI247/Labs/Lab1/

Your First “C” Program – “Hello World!”

Install your favorite Editor. Emacs or Vi are available for download into your Bash environment.

If you don’t have a favorite editor, you can start with the simple and free Notepad++ on your desktop and
copy the file over to your Bash terminal as discussed in the previous section.

Now type the following lines of code into a file and save the file as “HelloWorld.c”.

// HelloWorld.c

//

#include <stdio.h>

///

int main(int argc, char* argv[])

{

 printf("My first \"C\" program! Hello World!\n");

 return 0;

}

You are now ready to build this program into an executable. “Building” a program is a 2 step process – first
you have to compile it and then you have to link it to other libraries that this program depends on.

You can use the following command to invoke the GNU compiler and linker…

 gcc -Wall HelloWorld.c –o HelloWorld

https://notepad-plus-plus.org/download/v7.5.1.html

Version 1.3.7 Page 31 of 175

The “-Wall” option enables all the warnings in gcc (See Pg. 57 here).

Assuming there were no compile time or link time errors, the build process will generate an executable file
with the name “HelloWorld”. This will be located in your current folder.

Now run the HelloWorld program by running the following command in that directory…

 ./HelloWorld

Debugging a program

Very early in your coding experience you will certainly come to appreciate the power of debugging your
code. A debugger is perhaps the most important tool available to a software developer. The tool is a piece of
software that intercepts the loading and execution of a program by the Operating system and allows you the
luxury of viewing the state of your system at a given point of its execution. This ability is essential for
detecting both problems in logic and that in hardware.

“gdb” is the GNU version of the debugger available on most Linux based systems. A debugger relies on
symbols generated by the compiler to identify locations within a program. For “gdb” to have access to the
symbol information, you have to pass the “-g” to “gcc” so it persists the symbol information.

Once you build your executable with the “-g” flag you can load it in the “gdb” debugger as follows:

gcc -Wall -g HelloWorld.c –o HelloWorld

 gdb ./HelloWorld

Executing the above line with allow gdb to load the executable into a database of sorts where it is has the
ability to replace any instruction with exceptions that will generate software interrupts that gdb can field. You
can then set a breakpoint at any point in your code (meaning you are asking gdb to replace that part of the
code with an exception so it can stop execution when you get there).

 gdb ./HelloWorld // Load HelloWorld in the gdb debugger
 (gdb) b main // Set a breakpoint at main
 (gdb) r // Run to breakpoint
 (gdb) n // Step over the line at the breakpoint (Learn to use “s”, “p” etc.
 (gdb) r // Run to completion.

Other gdb commands are available here.

Data Types, Operators and Expressions

Basic Data Types

All “C” compilers recognize a few basic data types. These include the following:

char – This represents 1 byte
int – The size of an “int” is machine dependent. It is commonly 4 bytes.
float – This is single precision floating point. Its size is machine dependent.
double - This is a double precision floating point. Its size is machine dependent.

https://gcc.gnu.org/onlinedocs/gcc-5.2.0/gcc.pdf
https://gcc.gnu.org/onlinedocs/gcc-3.3.5/gnat_ug_unx/Introduction-to-GDB-Commands.html

Version 1.3.7 Page 32 of 175

A “floating point” is a term used in computing to represent real numbers as an approximation with a
number of limited bits. For example when ½ is written as 0.5, it is a floating point representation. The term
“floating” (as opposed to fixed) refers to the fact that there are no assumptions made on the number of digits
to the left or right of the decimal point, other than the obvious memory limitations.

Single precision refers to the storage of a floating point at a 32-bit memory location. Double precision
uses a 64-bit value to store a floating point.

Although there are only 4 basic data types in “C”, there are several ways you can declare variables of each
of these types.

You can use the “short” and “long” qualifiers when defining integers. These can alter the size of the integer
that is used to define a variable. The actual size is implementation dependent.

You can use the “signed” or “unsigned” qualifiers with the “char” or “int” variables. Using the “unsigned”
qualifier implies that all the bits in that data type can represent the data value, whereas using the “signed”
qualifier implies that the most significant bit will be reserved as the sign bit.

You can also declare constants using the “#define” syntax as shown below:

#define MY_CONST_VALUE 100

Subsequent to the above declaration, every time you use “MY_CONST_VALUE” in your program, the
preprocessor (a utility that runs prior to the compiler) will substitute it with “100”. This is also referred to as a
macro expansion. And the constant names are referred to as macros.

The way you declare a variable using these basic data types ultimately dictates the size and representation
of the data. For example, each of the declarations below use the type “char”, but each variable is of a
different size.

#define MY_ARRAY_SIZE 10

char var1;
char var2 [MY_ARRAY_SIZE];
char *var3;

“var1” is a variable of type “char”. So it is a 1 byte variable.

“var2” is an array of 10 characters (Note the compiler would substitute “MY_ARRAY_SIZE” with 10 because
of the earlier constant declaration). In the “C” language, array indices always start with “0”. So “var2[0]”
is a char as is “var2[9]”. Note that “var2[10]” does not exist and using it will cause undesired results.

“var3” is an interesting variable declaration. The leading “*” implies it is a “pointer” to a variable of type

“char”. A pointer variable is perhaps the most complex variable type to understand in the C language. It is
also the variable type that allows the C language to be particularly powerful and efficient in data
manipulation. We will be using this data type in subsequent sections. For now think of it as a data type that
stores the address of a memory location. In a 32-bit machine, each address is 32-bits wide. So a pointer
data type will be 32 bits, even though it is pointing to a single byte of memory (char) at that location.

Note that while C only accounts for the four data types above, most compilers offer a greater set of basic
data types. The Visual C++ compiler offers a “BYTE” (1 byte), “WORD” (2 bytes) and a “DWORD” (4 bytes).

User Defined Data Types

Structures:

Often times you want different data types to represent different aspects of a single entity. For example if you
wanted to store information about a student in your school, you probably want a field to store the student’s
name, another to store their age, yet another to store their grade and so on. The name can be defined as an

Version 1.3.7 Page 33 of 175

array of characters, the age and grade will likely be unsigned integers. The C language allows you to define
a structure containing these three fields as follows:

struct StudentRecord
{
 char Name [MAX_NAME_LEN];
 unsigned int Age;
 unsigned int Grade;
};

Subsequent to the above definition of “StudentRecord”, you can declare a variable of type “StudentRecord”
as follow:

struct StudentRecord myRecord;

You can also declare the variable “myRecord” at the same time you defined the structure as follows:

struct StudentRecord
{
 char Name [MAX_NAME_LEN];
 unsigned int Age;
 float Grade;
} myRecord;

“myRecord” is declared as a variable of type “struct StudentRecord”. You can access each of the fields in
this type using the “.” qualifier as follows:

myRecord.Name
myRecord.Age
myRecord.Grade

If you wanted to declare “myRecord” as a pointer to a structure of type “StudentRecord”, then you would
declare it as follows:

struct StudentRecord *myRecord;

In this case, you access individual member fields of myRecord using the “->” qualifier as follows:

myRecord->Name
myRecord->Age
myRecord->Grade

Note that when we declare “myRecord” as a pointer, you have only reserved space for an address. You
have not reserved space for the actual contents of the variable. We will discuss this in more detail in the
section on pointer variables.

Type Definitions:

If you wanted to avoid using the “struct” qualifier each time you declared a variable of type “struct
StudentRecord”, then you would define “StudentRecord” using the “typedef” “C” definition as follows:

typedef struct
{
 char Name [MAX_NAME_LEN];
 unsigned int Age;
 unsigned int Grade;
}StudentRecord;

You can then declare a variable of type “StudentRecord” as follows:

StudentRecord myRecord;

Version 1.3.7 Page 34 of 175

Notice how “StudentRecord” is treated as if it were a basic data type.

Arrays vs. Linked lists:

Often times, C programmers maintain a list of a particular data type. One way to implement this would be to
use an array as follows:

StudentRecord myRecord[10];

This can be rather inflexible, however. You need to know ahead of time the total number of elements you
wish to maintain. Adding or removing a record from anywhere other than the end of the array will requiring
shifting other elements.

The fact that C supports pointers allows for an alternative. If each record had a field that pointed to another
record of its own type, we could construct a linked list of elements of a particular type. The following
definition shows how this is done.

typedef struct sRecord
{
 char Name [MAX_NAME_LEN];
 unsigned int Age;
 unsigned int Grade;
 struct sRecord* NextRecord;
}StudentRecord;

Now you can allocate memory for a “StudentRecord” whenever you need to and add this memory location to
your list by simply setting the “NextRecord” to point to it. Here is an example:

StudentRecord *listHead;
StudentRecord var1, var2;

listHead = &var1;
var1.NextRecord = &var2;
var2.NextRecord = NULL;

We declare “listHead” as a pointer to “StudentRecord”. This means listHead can be assigned to an address
where a “StudentRecord” variable is located.

Then we declare 2 variables (var1 and var2) of type “StudentRecord”. In C we determine the address where
a variable is located using the “&” qualifier. So we can assign listHead to the address where “var1” is located
as shown above. We can then set the “NextRecord” field in var1 to point to the address where “var2” is
located. And finally point the “NextRecord” field in var2 to NULL to indicate that it is not pointing to anything.
Assigning a NULL to the last pointer in the list is a common practice in C programming and is often referred
to as NULL termination.

With those three simple assignments, we have created a linked list of two records. We can add further
records at any point and we can slot them between any two records without requiring the shift of other
records in memory. You can now begin to appreciate the power of pointers.

Bit-Fields:

In our examples thus far we had a need to use a basic data type such as a “char” or “int” for each of the
fields in our structure. What if the data we wanted to store was binary in nature – on or off? We could still
store it as a char, but it would be an utter waste of the remaining 7 bits in the “char” data type. We would
only need 1 of the 8 bits for our purpose. Similarly, if our data only needed 3 bits (meaning 23 or 8
permutations), we would be wasting memory by using a “char” for such a variable. To remedy these
situations, C allows us to assign variable names to bits within a data type as follows:

struct
{
 unsigned int flag_bit_0 : 1;

Version 1.3.7 Page 35 of 175

 unsigned int flag_bit_1 : 1;
 unsigned int flag_bit_2_3 : 2;
} flags;

You can now access individual bits within the “unsigned int” variable called “flags” as follows:

flags.flag_bit_0 /* To access bit zero */
flags.flag_bit_1 /* To access bit 1 */
flags.flag_bit_2_3 /* To access bit 2 and 3 */

Note that anything that prefixed with “/*” and terminated by “*/” is assumed to be a comment by the C
compiler. The C++ compiler also allows anything up to the end of a line, after “//” to be ignored as a
comment.

Unions:

Sometimes you may find the need to have different data types to represent things that can otherwise be
considered similar. For example if you were monitoring a set of sensors, where each sensor provided data
that was either an integer or a floating point, you would probably want to maintain an array or linked list of
sensor data items. But it would get a bit tricky if some of these nodes had to have floating point data while
others had to have integer data. One way to handle this would be to allow a structure to have 2 fields – int
and a float, but that would be a waste of memory.

C allows for a “union” variable type where you can define multiple fields with multiple types and the compiler
will allocate memory corresponding to the largest type within the multiple types and depending on which field
name you use to access the variable, an assumption will be made on the data type you wish to use. The
following is an example of a union declaration.

union
{
 int var_int;
 float var_float;
} union_var;

union_var.var_int //To use this location as an int
union_var.var_float //To use this location as a float

Endianness
Endianness refers to the sequential order in which bytes are organized in memory. If the most significant
byte is stored at the lowest address, it is referred to as “Big-Endian”. If the most significant byte is stored at
the highest address, it is referred to as “Little-Endian”. X86 is little-endian. Network traffic is usually big-
endian.

Arithmetic, Logical and Bitwise operators

Arithmetic Operators

“C” uses the following arithmetic operators:

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

Version 1.3.7 Page 36 of 175

++ Increment by 1 eg. Var1++; // Var1= Var1 +1;

-- Decrement by 1 eg. Var1--; // Var1 = Var1 – 1;

+= Add and assign eg. Var1+=Var2; // Var1 = Var1 + Var2;

-= Subtract and assign eg. Var1-=Var2; // Var1 = Var1 – Var2;

= Multiply and assign eg. Var1=Var2; // Var1 = Var1 * Var2;

/= Divide and assign eg. Var1 /= Var2 ; // Var1 = Var1 / Var2;

%= Mod and assign eg. Var1 %=Var2; // Var1 = Var1 % Var2;

Logical Operators

“C” uses the following logical operators

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

== Equal to

!= Not Equal to

&& Logical AND

|| Logical OR

Bitwise Operators

“C” uses the following bitwise operators

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

<< Bit Left shift

>> Bit Right shift

~ One’s complement

Note that in general “*”, “/” and “%”get executed before “+” and “-“. There are similar precedence rules for all
of these operators when used within the same execution line. The easiest way to avoid precedence rule
errors is to make sure your wrap the operations that need to be executed first within parentheses. The
following is an example of the use of parenthesis to explicitly state the precedence order.

(var1 & 0x1F) == 0;

Here, we are trying to check if the lower 5 bits of var1 is zero. Note how we make sure that the bitwise AND
happens before the equality check, by wrapping it in parentheses.

Common Syntax and Expressions

The most productive way to learn the syntax and expressions used in the C language is to write samples
that exploit the knowledge we have already gained.

Version 1.3.7 Page 37 of 175

The following sample declares a user defined structure and then allocates two variables of that type, creates
a linked list with those variables and then traverses the list.

In the process we use the assignment expression “=”, and the “if” and “else” expressions. We also learn the
syntax used in writing a “C” expression and how an expression is terminated. Let us study the expression
below:

 var1.Age = 10;

Here we are assigning a value to the “Age” field of the variable “var1”. We indicate that our expression is
complete with the help of a semicolon. The semicolon indicates to the compiler that the expression is
terminated. A terminated expression is also known as a “statement” in “C”. There is no reason (other than
ease of readability) to put statements on different lines. The compiler recognizes a complete statement
based on the semicolon. If you wish, you can put all your statements on the same line in the editor and the
compiler will have no objections.

Another “C” syntax is the use of blocks that are defined with curly braces as shown below.

 if(currentStudent != NULL)

 {
 /* Block 1 */

 }
 else

 {
 /* Block 2 */

 }

This is a way to tell the complier that the code within a block should only be executed if the condition
specified at the entrance to the block is satisfied. In the example above the “if” clause confirms that the
variable “currentStudent” is not NULL. If that condition is met, then the code in block 1 is executed. If that
condition is not met, then the code in block 2 is executed as part of the “else” statement. Note that there is
no requirement to have an “if” clause prior to using the curly braces to define a block. You can have
unconditional blocks. It does not serve any particular purpose, but you may find it useful while debugging.

Note that in the sample we use the “printf” command. This is actually a function call (similar to a procedure
call in assembly) in C. The function is implemented as part of the C-Runtime library to which the linker will
link your program after the compiler has compiled the program. The compiler, however, needs to know the
signature (argument list and return values) of functions implemented in libraries to validate your call and find
the best way to pass these arguments and accept return values. Header files are used for this purpose. We
include header files at the top of the file (eg. #include <stdio.h>). These header files have the function
declarations for the functions implemented in libraries. These function declaration are also known as
function prototypes.

Copy and build the sample below and step over each line in the debugger as you study what it is trying to
accomplish.

/* Sample2.cpp */

#include <stdio.h>

typedef struct sRecord

{

 char Name[100];

 unsigned int Age;

 unsigned int Grade;

 struct sRecord *NextRecord;

}StudentRecord;

int main(int argc, char* argv[])

{

 StudentRecord *headList, *currentStudent;

 StudentRecord var1, var2;

Version 1.3.7 Page 38 of 175

 unsigned int count;

 /* Print the size of the Basic data types.*/

 printf("Size of Basic Data types are... char=%d, int=%d, float=%d double=%d long

int=%d short int=%d\r\n",

 sizeof(char), sizeof(int), sizeof(float), sizeof(double),

sizeof(long int), sizeof(short int));

 /* Print the size of our structure. */

 printf("Size of the Student Record Structure is %d\r\n", sizeof(StudentRecord));

 /* Set the age of the 2 students we are tracking */

 var1.Age = 10;

 var2.Age = 12;

 /* Create a linked list of the 2 student records.*/

 headList = &var1;

 var1.NextRecord = &var2;

 var2.NextRecord = NULL;

 /* Parse the linked list and print the student ages */

 count = 0;

 currentStudent = headList;

 if(currentStudent != NULL)

 {

 count++; /*Increase student count */

 printf("Student %d is %d years old\r\n", count, currentStudent->Age);

 currentStudent = currentStudent->NextRecord;

 if(currentStudent != NULL)

 {

 count++; /*Increase student count */

 printf("Student %d is %d years old\r\n", count, currentStudent->Age

);

 currentStudent = currentStudent->NextRecord;

 if(currentStudent != NULL)

 {

 count++; /*Increase student count */

 printf("Student %d is %d years old\r\n", count,

currentStudent->Age);

 currentStudent = currentStudent->NextRecord;

 }

 else

 {

 printf("There are only %d students in the list\r\n", count

);

 }

 }

 else

 {

 printf("There are only %d students in the list\r\n", count);

 }

 }

 else

 {

 printf("There are only %d students in the list\r\n", count);

 }

 return 0;

}

Execution Flow Control

if - else if - else
We have already seen the use of an “if” statement in our previous sample. The “if” statement is the most
common method to decide on an execution path in “C”. The following is the syntax for using an “if”
statement.

Version 1.3.7 Page 39 of 175

 if(expression 1)

 {
 /* Block 1 */

 }
 else if (expression 2)

 {
 /* Block 2 */

 }
 else

 {
 /* Block 3 */

 }

Note that the expression within the bracket after the “if” and “else if” are not terminated with a semicolon.
Hence they are not statements by themselves. They are checks that result in a TRUE or FALSE evaluation.
For example, in the “if” statement below we are checking if the variable “currentStudent” is not a NULL. This
check does not change the value of “currentStudent” nor does it change anything else. It simply determines
if we should execute the code within the subsequent block.

 if(currentStudent != NULL)

 {
 /* Block 1 */

 }

Note that if you only have a single statement within a block, you don’t need the curly braces to define the
block, although it is highly recommended for ease of readability and subsequent maintenance of the code.

You can have any number of “else if” checks as required.

The final “else” fields the case where none of the expressions in previous “if” and “else if” statements were
evaluated to a TRUE.

While, For and Do-While loops

While loop:

The “while” loop allows the repetitive execution of a block of code until the “while” expression returns
FALSE. The expression is specified much like it was done with the “if” statement.

 while(expression)

 {
 /* Block of code */

 }

Unlike the “if” statement, we don’t get out of the block when we get to the last statement in the “while” block.
Instead we go back and reevaluate the expression in the “while” loop and if it is still TRUE, we will again
execute all the code within the while block.

Note how the “while” construct would have been helpful to us in our previous sample. Instead of having
nested “if” statements, checking if the “currentStudent” is NULL, we could have used a single “while”
statement as follows:

Version 1.3.7 Page 40 of 175

 /* Parse the linked list and print the student ages */

 count = 0;

 currentStudent = headList;

 while(currentStudent != NULL)

 {

 count++; /*Increase student count */

 printf("Student %d is %d years old\r\n", count, currentStudent->Age);

 currentStudent = currentStudent->NextRecord;

 }

For loop:

The “for” loop is an extension of the “while” loop.

Notice how with a “while” loop we had to do some initialization before we evaluated the while expression
(eg. Assigning “currentStudent” to “headList”).

We also had do some more initialization at end of the while block (eg. Reassigning “currentStudent” to the
next record).

The “for” loop allows us a way to account for these initializations as part of the statement construct itself.

The following is the syntax for a “for” loop. Notice how it allows for 2 statements and 1 expression.
Statement 1 is executed the first time we enter the for loop. Expression1 is evaluated each time we enter the
for loop and only if the expression evaluates to a TRUE will we execute the “for” block of code. Statement 3
is executed at the end of each iteration of the loop.

 for(statement1; expression1; statement2)

 {
 /* Block of code */

 }

Our while sample above could be rewritten into a for loop as follows:

 /* Parse the linked list and print the student ages */

 count = 0;

 for(currentStudent = headList;

currentStudent != NULL;

currentStudent = currentStudent->NextRecord;)

 {

 count++; /*Increase student count */

 printf("Student %d is %d years old\r\n", count, currentStudent->Age);

 }

Note that you can have multiple statements as part of statement1 and statement 2 in a “for” loop. In this
case, you separate them with a comma.

Do-While loop:

With both the “while” and “for” loops, the expression that determined if we were going to execute the code in
the loop block was executed at the start of the loop. The “do-while” allows for the expression to be evaluated
at the end of the loop instead, thus ensuring that the loop code is executed at least once.

The syntax for the do-while is as follows:

 do

 {
 /* Block of code */

 }
 while(expression)

Version 1.3.7 Page 41 of 175

Break and Continue

Within any loop block, it is sometimes convenient to either exit out of the loop unconditionally prior to getting
to the expression gate in the loop block or re-check the expression and start at the beginning of the loop
block without going all the way to the end of the loop block. C allows for both these options.

To exit from a loop block at anytime, use the “break” statement as follows:

 for(statement1; expression2; statement3)

 {
 /* First block of code */

 break;

 /* Second block of code */

 }

The “break” statement within this loop block will prevent the second block of code from ever being executed.
Often you will have an “if” clause to determine if you wish to call a “break”.

To continue at the top of a loop block without going through the rest of a loop, you can use the “continue”
statement as follows:

 for(statement1; expression2; statement3)

 {
 /* First block of code */

 continue;

 /* Second block of code */

 }

The “continue” statement within this loop block will prevent the second block of code from ever being
executed. Often you will have an “if” clause to determine if you wish to call “continue”.

Switch Statement

All the execution control statements that we have studied so far allowed for the execution of a block of code
based on the evaluation of an expression to be TRUE. If the expression was evaluated to be FALSE, we
would not execute the associated code block. Note that in C, TRUE refers to all values that are non-zero.
FALSE refer to a zero value.

The “switch” statement allows the possibility of executing different blocks of code for different integer
expression evaluations, as opposed to the binary, TRUE and FALSE evaluations. So if an expression
evaluated to a “2”, you can specify a code block which is different from a code block that will be executed if
the expression evaluated to a “3”, for example.

The following is the syntax for a “switch” statement:

 switch(expression)

Version 1.3.7 Page 42 of 175

 {
 case 0:

{

 /* Code Block for 0 */

}

break;

 case 1:

{

 /* Code Block for 1 */

}

break;

 case 2:

{

 /* Code Block for 2 */

}

break;

default:

{

 /* Code Block for default */

}

break;

 }

Note that the expression evaluation determines the starting case block. To ensure that you don’t execute the
case block subsequent to the expression evaluation case, you need to use the “break” statement at the end
of each case block. In some cases, you may want to fall through to the subsequent block. If so, you can
avoid the call to “break”.

The “default” case fields all cases for which you have not declared an explicit case block.

Goto Statements

Although frowned upon by advocates of structured programming, C provides a way to abruptly change the
execution path at anytime by calling the “goto” statement with a label identifying where to move to.

A label is a name, much like a variable name, that must be followed by a colon. It serves to identify a
location within your program. A label name is scoped at a function level. In other words, you can have the
same label name multiple times within your program, as long as they are in different functions within the
program.

Though a “goto” statement has the possibility of making the task of studying code paths particularly difficult,
there are situations where its use is legitimate. Take the case where you have nested loops. If you wanted to
get out of all the loops because you have encountered a catastrophe, a “goto” might come to the rescue. A
“break” will be insufficient for this purpose, because it will only get you out of the innermost loop.

The following is an example of the syntax used with a goto statement:

int MyFunction(void)
{

while (expression)
{

while (expression)
{

If(Major_Error) goto Error;

Version 1.3.7 Page 43 of 175

}
}

return(0);

Error:
/* Execute error recovery */

return(-1);

}

Notice how this function will return “-1” if an error is encountered. Otherwise it will return “0”.

Program Structure

Function Calls

Every C program has a “main” entry point. This is where the execution will begin once your program is
loaded. Theoretically, you could write your entire code within the “main” routine, but in reality this will be
difficult to maintain and you will deny yourself the benefit of code reuse. A more elegant alternative would be
to isolate generic functionality into procedures, much as we did in the assembly language. These
procedures are referred to as functions in the C language.

Every function in C is uniquely identified by a function signature. In C the signature of a function is
essentially the name of the function. A function declaration will state its name, the arguments (if any) that the
function takes, and its return type.

In the declaration below we have a function by the name “MyFunction1” that takes two arguments, an
integer and a character and it returns an integer.

int MyFunction1(int arg1, char arg2);

If “MyFunction1” was not going to return any value, it would be declared as follows:

void MyFunction1(int arg1, char arg2);

Similarly if “MyFunction1” was not going to take any arguments, it would declared as follows:

int MyFunction1(void);

Most computer languages subsequent to C use more than the function name as the function signature. C++
for example uses the argument and return types as part of a function signature. This means that functions
with the same name can be responsible for different actions. This is also known as function overloading.
Languages that use argument and return types as part of the function signature, are also referred to as
“strongly typed” languages. Consequently C is sometimes referred to as a “weakly typed” language.

The original implementation of C was even more weakly typed than the current ANSI standard
implementation. The ANSI standard allows the function declarations to state all the data types for both
arguments and return values, thus allowing compilers to check that declarations match function definitions
and calls.

A function declaration should be encountered by an ANSI C compiler prior to a function call, else it is unable
to cross check the parameters being passed to a function and the return values being accepted from
functions. To meet this requirement, C programs will declare functions (also known as function prototypes
or forward declarations) at the top of a C file as shown below:

Version 1.3.7 Page 44 of 175

int MyFunction1(int arg1, char arg2);

int main(int argc, char* argv[])

{

 int retVal;

 retVal = MyFunction1(1, ‘c’);

 return(retVal);

}

Here the “main” routine is making a call to “MyFunction1”. The compiler needs to confirm that the arguments
being passed to “MyFunction1” are of the types that it expects and that return value of “MyFunction1”
matches the type of variable that is being assigned to it. The “MyFunction1” declaration at the top of file
serves this purpose.

Note that the actual definition of “MyFuntion1” is not needed by the compiler. The actual definition is only
needed at link time, when all the compiled code (also known as object files), are linked to form an
executable. Thus the definition of “MyFunction1” could be in a completely different C file or even supplied by
a 3rd party as a library to which you can link. The use of functions thus lends itself to the reuse of code.

Sometimes it is convenient to place all the function prototypes in a file and include that file in all the C files
that use those functions. This is called a header file and by convention, header files have a “.h” filename
extension and C files have a “.c” filename extension.

It is worth noting that the “main” routine is itself a function that returns an integer and takes an integer and a
pointer to a character array as arguments. The loader is responsible for passing these arguments to the
“main” routine after it loads a program. The integer argument represents the number of command line
parameters being passed in and the array of char pointers represents each of the command line
parameters.

Variable Types and Declarations

The C language allows for many variations in declaring and accessing variables. While these variations can
be a source of flexibility, a lack of understanding on how these variations impact implementation can lead to
undesired results. In this section we will cover the bulk of the common declaration and access techniques.

Global variables:

A variable that can be accessed from any function in a program without any restriction is referred to as a
global variable. Syntactically a global variable is declared outside of all functions. In the example below the
variable “MyGlobalVariable” is declared outside the “main” and “MyFunction1” routines, but can be accessed
by both those routines. This sort of declaration also referred to as unlimited scope.

int MyFunction1(int arg1, char arg2);

int MyGlobalVariable;

int main(int argc, char* argv[])

{

 int retVal;

 MyGlobalVariable++;

 retVal = MyFunction1(1, ‘c’);

 return(retVal);

}

Version 1.3.7 Page 45 of 175

int MyFunction1(int arg1, char arg2)

{

 MyGlobalVariable++;

 return(0);

 }

While C does not define where global variables have to be placed in memory, most compilers will store
global variables as part of the data segment. This is because the compiler is aware that this memory
location is valid for the entirety of execution.

While global variables allow the convenience of access from any function, this convenience can also be the
cause of unexpected results because of the increased opportunities for data corruption. For this reason the
use of global variables is often discouraged.

Local variables:

Also known as Automatic variables, local variables exist only when the code within the scope of the
variable is being executed. Any variable declared within a block of code (within a set of curly braces) is a
local variable by default. In the example below, notice that “myLocalVariable” is declared inside the code
block for “MyFunction1”. Hence this variable only exists when the execution is within “MyFunction1”.

Most compilers would allocate memory for local variables on the stack just before starting the execution
of the function. This implies that if a function calls itself (also known as recursion) each call will get its own
instance of “myLocalVariable”. When the stack unwinds and the execution returns from a function, the local
variables are automatically discarded as part of the stack unwinding.

int MyFunction1(int arg1, char arg2);

int MyGlobalVariable;

int main(int argc, char* argv[])

{

 int retVal;

 MyGlobalVariable++;

 retVal = MyFunction1(1, ‘c’);

 return(retVal);

}

int MyFunction1(int arg1, char arg2)

{

 int myLocalVariable;

 myLocalVariable++;

 MyGlobalVariable++;

 return(0);

 }

Dynamic variables:

Sometimes it is necessary to allocate memory based on certain conditions that are only known at runtime. In
such situations C allows for dynamic allocations of memory. These allocations are carved out of a chunk of
memory that is reserved at the start of execution of a program and is referred to as the heap.

Dynamic (or heap) variables are similar to global variables in that, once allocated they are available for use
by all functions until they are freed. The C runtime library provides a few functions that can be used to
manage dynamic allocations. The most common functions used for this purpose are the “malloc” and “free”
functions.

Version 1.3.7 Page 46 of 175

In the example below, “MyFunction1” takes the dynamic allocation size as an argument. This size is used in
the call to “malloc”. Note that the “malloc” function takes that size in bytes. If malloc is successful, it will
return a pointer to the heap allocation. If it is not successful (eg. ran out of heap memory), it will return
NULL. Whenever dealing with pointers, it is important to check for a NULL pointer before using it, otherwise,
you are likely to run into undesired results.

char* MyFunction1(int size);

int main(int argc, char* argv[])

{

 char* myHeapVariable;

 myHeapVariable = MyFunction1(100);

 /* Use the 100 bytes pointed to by myHeapVariable */

 if(myHeapVariable)

{

 free(myHeapVariable);

 }

 return(0);

}

char* MyFunction1(int size)

{

 char* ptr;

 ptr = malloc(size);

 if(ptr)

 {

 return(ptr);

 }

 else

 {

 return(NULL);

 }

 }

Static qualifier:

Sometimes you want the advantages of a global variable without some of the disadvantages. For example
you may wish to persist the value of a variable within a function between function calls. If you declared this
variable as a local variable, the value would be lost once we exit the function. Making the variable global
would remedy the problem, but then leave the possibility that others could access it.

The “static” qualifier provides a way to create a global variable with limited scope. In the example below, we
have declared “ptr” as a static variable in the “AllocateFree” function with an initial value of NULL. The 2nd
argument to the “AllocateFree” function dictates if an allocation or free is being requested. If an allocation is
being requested, the first argument reflects the size of the allocation. If a free is being requested, the first
argument is not relevant. The “AllocateFree” function will only allocate memory if it has not previously
allocated the memory. If it has previously allocated the memory, it will return the same pointer that it saved
in its static variable (ptr). Note that “ptr” cannot be directly accessed by the main routine.

Note the use of “if(!ptr)”. This is equivalent to “if(ptr != NULL)”. It is a common shorthand in the C language.

char* AllocateFree(int size,);

int main(int argc, char* argv[])

{

 char* myHeapVariable;

Version 1.3.7 Page 47 of 175

 myHeapVariable = AllocateFree(100, 1);

 /* Use the 100 bytes pointed to by myHeapVariable */

 if(myHeapVariable)

{

 AllocateFree (100, 0);

 }

 return(0);

}

char* AllocateFree (int size, char allocate)

{

 static char* ptr = NULL;

 if(allocate != 0)

 {

 if(!ptr)

{

ptr = malloc(size);

 }

 }

 else

 {

 if(ptr)

 {

 free(ptr);

 prt = NULL;

 }

 }

 return(ptr);

 }

A static qualifier can also be used with a global variable to limit its scope to the C file within which the global
variable is declared.

Register qualifier:

As you will recall from our study of hardware, accessing memory is a lot slower than accessing registers
inside the CPU. If a variable is going to be used very frequently, it would be a lot more efficient to use a
register to save the contents of the variable than to use a memory location. You can do this in C using the
register qualifier. The compiler will try and accommodate this request, based on the hardware constraints
that it is working with.

The syntax for the use of the register qualifier with an integer variable is as follows:

register int variable;

volatile qualifier:

When a variable is declared as volatile, the compiler avoids optimizations to the access of this variable. This
is because, the variable is expected to be altered by code outside the scope of the code the compiler is
working on (eg. Interrupts).

The Preprocessor

The C language provides for an initial step prior to the start of compilation known as preprocessing. The
preprocessor provides facilities to implement certain features before the compilation begins. We have
already used some of these preprocessor features in our examples thus far. Preprocessor directives start
with the “#” symbol.

Version 1.3.7 Page 48 of 175

File Inclusion:

“#include” is a directive to include a file (usually a header file) prior to the start of compilation. Below are a
couple of examples of its use. The use of the “<” and “>” brackets asks the preprocessor to use the include
path to locate the file. If the quotes are used instead, it means the file is located in the current directory.

#include <stdio.h>

#include “MyHeader.h”

Macro Substitution:

“#define” is a directive to perform macro substitution. The macro name that appears immediately after the
“#define” is substituted with a replacement that is stated subsequent to the macro name. We used macros to
define constants previously. The examples below define a constant and another macro that determines the
greater of 2 values. Whereever “MAX(..)” is used in the file, the preprocessor will replace it with the check
that follows. Most coding standards will make macros all uppercase, so the reader knows easily it is a macro
definition.

#define MY_CONSTANT_1 1000

#define MAX(x,y) ((x) > (y) ? (x) : (y))

Conditional Inclusion:

Sometimes you want certain parts of the code to be included or omitted during compilation. Editing the file
each time can be time consuming. The preprocessor directive to conditionally include parts of the file can be
useful in this situation.

In the example below, unless “TRACE_LEVEL_1” has been previously defined using the “#define” macro,
the “printf” code will not be included as part of the compilation.

#if defined (TRACE_LEVEL_1)

printf(“This is more detailed trace\r\n”);

#endif

The syntax also allows for multiple conditions as follows:

#if defined (TRACE_LEVEL_1)

printf(“This is more detailed trace at trace level 1\r\n”);

#elif defined (TRACE_LEVEL_2)

printf(“This is more detailed trace at trace level 2\r\n”);

#else

printf(“This is the default trace level.\r\n”);

#endif

Operators in C

“sizeof” is a common operator in C. It is evaluated at compile time. “sizeof” is not a

function or a macro.

Pointers in C
The use of pointers is an integral part of programming in the C language. They contribute substantially to the
efficiency of code written in C. Unfortunately pointers also lend themselves to bad coding practices that can

Version 1.3.7 Page 49 of 175

lead to undesired results. Understanding the inner workings of pointers in C is essential to fully exploiting the
power of the C language, while avoiding its pitfalls.

In this section we will study some of the common applications of pointers in C programming.

A Pointer Variable

A variable in the C language is essentially a label that identifies a memory location. The type of the variable
will dictate the size of the memory location. A “char” variable for example, will be 1 byte in memory, while an
integer variable may be 2 bytes or 4 bytes.

A memory location is always identified at a byte level of granularity. The number of uniquely addressable
bytes will be determined by the number of address lines available on the system. Most personal computers
use 32 bits for addressing. This means that they can access 2^32 bytes (4 Gigabytes) of memory.

The label we use to identify a variable represents an address. This will be the address of the byte at one end
(depending on whether it is big-endian or little-endian) of the memory location used to store the entire
variable. The compiler will recognize the type of variable we are dealing with and make sure that when we
assign values to this variable the full size of the variable is taken into account.

A pointer variable is essentially a variable that allows you to store the addresses of other variables, so that
you don’t have to explicitly know the label for those variables to access them. Since a pointer variable stores
an address, its size is always the same (32 bits in a 32 bit system).

As an example, let us look at some code in the disassembly window of our debugger.

Here we have defined two global variables – “intVar” and “intPtr”. “intVar” is an integer variable, while “intPtr”
is an integer pointer.

 int intVar;

 int* intPtr;

When we assign “2” to “intVar”, notice what the compiler is actually doing. The compiler happens to know
that “intVar” is located at address “0x4096FC”. So it translates this to a “mov” instruction to move a constant
“2” to that location. Notice the term “dword ptr” in the move instruction. That is what determines the size of
the move. The compiler happens to know that the “intVar” is an integer variable and that is a “dword” in the
Microsoft compiler. A “dword” (double word) is 4 bytes in Microsoft compiler. So even though, the move
instruction is provided with the address of the byte at one end of the 4 bytes representing the variable, the
move actually moves 4 bytes of data.

 intVar = 2;

00000052 mov dword ptr ds:[004096FCh],2

When we assign the address of “intVar” to our pointer variable, notice the compiler again translates this to a
“dword” move instruction. This is because an address is also 4 bytes (32 bits) on this machine. The address
it is moving is the same address (0x4096FC) we used previously, because we are now assigning the
address of “intVar” to “intPtr”. Note “intPtr” is located at 0x409780.

 intPtr = &intVar;

0000005c mov dword ptr ds:[00409780h],4096FCh

If we now want to use the pointer variable to access “intVar”, we can do so by using the “*” prefix before the
“intPtr” variable. This is the C syntax to indicate that you are now talking about what is pointed to by the
pointer variable as opposed to the pointer variable itself. Notice the compiler translates this to a register
indirect move instruction, but first it moves the address saved in the pointer variable to the EAX register. The
compiler happens to know that the pointer variable is located at address 0x409780.

 *intPtr = 3;

00000066 mov eax,dword ptr ds:[00409780h]

0000006b mov dword ptr [eax],3

Version 1.3.7 Page 50 of 175

After the first instruction above is executed, the EAX register will have the value “0x4096FC”. Then the “3”
will get moved to that address.

So in summary, from here onwards, always think of a pointer variable as a means to access a regular
variable without using the variable’s name, but rather its address.

Version 1.3.7 Page 51 of 175

Pointer Arithmetic

In the previous section, we used an example of an integer pointer to save the address of an integer variable.
What would you expect to happen if we added “1” to the pointer variable after we assigned it to the address
of the integer variable?

Let us find out what the compiler would do in this case with our code. Here is what the disassembly window
tells us…

 intPtr = &intVar;

0000005c mov dword ptr ds:[00409780h],4096FCh

 intPtr++;

00000066 add dword ptr ds:[00409780h],4

Notice how incrementing the “intPtr” by 1 translates to the addition of “4” to our saved address.

This is because the compiler recognizes that “intPtr” is a pointer to an integer and if we add “1” to it, we
intend to move to the next integer in memory, as opposed to the next byte in memory.

Notice how your knowledge of the assembly programming is proving useful in understanding the true inner
workings of the compiler. Reverse engineering of this sort can prove invaluable in solving otherwise difficult
problems. It also happens to be a great learning aid.

Let us try the same with a char variable.

 charPtr = &charVar;

00000059 mov dword ptr ds:[004096F0h],4096F6h

 charPtr++;

00000063 inc dword ptr ds:[004096F0h]

Notice how the compiler now uses the “inc” instruction instead of the “add” instruction. This is because the
compiler knows that the char variable is only 1 byte and moving to the next char only requires the address to
be incremented by “1”.

What about a pointer to a user defined structure? Let us define variable “srVar” and “srPtr” to refer to the
“StudentRecord” structures that we use earlier and try the same experiment.

 srPtr = &srVar;

00000052 mov dword ptr ds:[00409788h],409790h

 srPtr++;

0000005c add dword ptr ds:[00409788h],70h

Notice this time we add 0x70 (decimal 112). That happens to be the size of the structure.

Addition and subtraction of pointer variables will translate to changes in pointer values that reflect the size of
the variable the pointer is pointing to.

Sometimes it is convenient to have a pointer variable that is not associated with any data type. Situations
where this happens include functions that allow varied data types as arguments. The C language allows for
a “void” pointer for this purpose. One limitation of a void pointer however, is that you can’t perform
arithmetic operations on them. However you can assign them to pointers of a different type. This is known
as type casting. For example you can assign a void pointer to a StudentRecord pointer as follows
(assuming of course that you are confident that the “voidPtr” passed to you is in fact of type
“StudentPointer”).

srPtr = (StudentRecord*) voidPtr;

Version 1.3.7 Page 52 of 175

Pointers and Arrays

Pointers and Array are interrelated in the C language. Any operation that involves array subscripting to
access a memory location can also be achieved using pointers. As it turns out, the label used to refer to an
array in C is effectively a pointer.

int myArray[10];

int *intPtr;

int main(int argc, char* argv[])

{

 /* Initialize all 10 array elements to 0 */

 for(int i =0; i<10; i++)

 {

 myArray[i] = 0;

 }

 /* Assign the value 99 to the 7th element of the array */

 *(myArray+7)= 99;

 /* Assign the value 3 to the 3rd element of the array */

 myArray[3] = 3;

 /* Initialize the “intPtr” to be “myArray” */

 intPtr = myArray;

 /* Assign the value 98 to the 8th element of the array */

 *(intPtr+8) = 98;

 return(0);

}

Watch “myArray” in the watch window as you step over these lines of code. You should end up with the
following:

Notice that when we assign “intPtr” to “myArray”, we did not use the “&” qualifier on “myArray” to get its
address. This is because an array variable is effectively a pointer in C. Hence it is the equivalent of
assigning one pointer variable to another.

Version 1.3.7 Page 53 of 175

Argument Passing by Reference

C allows for two ways to pass arguments to functions. The first is called “passing by value” and the second
is called “passing by reference”.

In the examples thus far we passed arguments by value. This involves passing a variable or a constant as
the argument to a function. When we do this the compiler pushes our values on the stack or into registers
before making the call to the function and the function then accesses these values from the registers or the
stack. Note that what is passed to the function is the current value of a variable and not the address of the
variable. The significance of this is that the function cannot change the variable in the calling function. It can
only use the value being passed in.

The other alternative is to pass by reference. Here we pass the address of the variable to a function. The
function can now change the contents of the variable in the calling function.

Here is an example of two functions – “MyFunction1” takes an argument by value, while “MyFunction2”
takes an argument by reference.

Watch “myArg” in the debugger watch window as you execute both these functions. Notice that after
“MyFunction2” executes, “myArg” changes from “10” to “20”.

int MyFunction1(int myArgVal);

int MyFunction2(int* myArgRef);

int main(int argc, char* argv[])

{

 int myArg = 10;

 MyFunction1(myArg);

 MyFunction2(&myArg);

 return(0);

}

int MyFunction1(int myArgVal)

{

 int localVar;

 localVar = myArgVal;

 localVar++;

 return(localVar);

}

int MyFunction2(int* myArgRef)

{

 int* localVarPtr;

 localVarPtr = myArgRef;

 *localVarPtr = 20;

 return(*localVarPtr);

}

Version 1.3.7 Page 54 of 175

Function Pointers

Functions, like variables, also reside in memory. We identify functions by function names. The compiler
identifies functions by the address at which it is located. This means that we can access functions without
calling them by name, if we had access to their address location.

Function pointers are a type of variable used to store function addresses. Calling a function requires
knowledge of the full function signature, such as its arguments and return values. Hence a function pointer is
always a user defined type of data that specifies the argument types and the return values. Like any user
defined type of data, you can use the “typedef” operator to define a function type. You can also declare a
function pointer directly without the use of the “typedef” operator.

In the example below, we define two function pointers – “MyFunk1” and “func”. “MyFunk1” uses the “FUNK”
type that was defined earlier using the typedef operator. “func” is declared directly without the typedef
operator.

Note that in both cases, we give enough information to the compiler to know the argument types and the
return values.

Once declared, function pointers can be assigned to any function that matches the signature for which it was
declared. In our example we assign it to “MyFunction”.

typedef int (*FUNK)(int,char);

int MyFunction(int var1, char char1)

{

printf("MyFunction called args: %d and '%c'\n", var1, char1);

 return 0;

}

int main(int argc, char* argv[])

{

 int (*func)(int,char);

 FUNK MyFunk1;

 func = MyFunction;

 MyFunk1 = MyFunction;

 (*func)(1,'A');

 MyFunk1(2,'B');

 return(0);

}

General Coding guidelines
1. Translate problem statement into pseudo-code and optimize it.

2. Translate pseudo-code to real code in stages and validate and backup each stage

3. Make small incremental changes in each stage

4. Write code neatly with comments and indentations for easy reading

5. Always check return values from function calls and take corrective actions if needed.

6. Follow the coding standard you are conforming to. Be consistent!

7. When writing header files use the #ifdef directive to avoid duplicate inclusions

Version 1.3.7 Page 55 of 175

8. Code review and peer review code to identify logical and coding bugs early

9. Write a set of test cases to cover the possible range of inputs.

10. Use the debugger in the first run to walk the code to make sure your code is following
the logic you implemented (functional validation)

11. Once functional validation is completed, test for various possible inputs including
extreme possible values (edge-case validation).

12. Once edge-case validation is completion, test the program at maximum stress (stress
validation). Race conditions, deadlocks and resource leaks are often caught in this stage.

Sample Functions in C
The fastest way to gain proficiency in any language is to use it. In that spirit, we will devote this last section
to writing samples that address common programming tasks. We will start with a problem statement and
follow that up with a sample. You are encouraged to start by writing your own code to address the problem
prior to looking at the sample..

Illustration of C constructs

/*

 pre-processor include directives.

 These include files have the forward declarations

 For the APIs you intend to use

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

/*

 Macros declarations

*/

#define MAX_NAME_LEN 100

#define MAX_STUDENT_RECORDS 10

/*

 Forward declarations

*/

void TestFunction(int* var1, float var2);

/*

 Structure declaration

*/

struct StudentRecord1

{

 char Name[MAX_NAME_LEN];

 unsigned int Age;

};

/*

 typedef declaration

*/

typedef struct

{

Version 1.3.7 Page 56 of 175

 char Name[MAX_NAME_LEN];

 unsigned int Age;

}StudentRecord2;

/*

 typedef structure declaration with pointer to self

*/

typedef struct student

{

 char Name[MAX_NAME_LEN];

 unsigned int Age;

 struct student* NextRecord;

}StudentRecord3;

/*

 Global variables would be declared here

*/

/*

 Main function with 2 default arguments

*/

int main(int argc, char*argv[])

{

/*

 Local variables in Main function.

*/

 struct StudentRecord1 var1;

 StudentRecord2 var2;

 StudentRecord2 allStudents[MAX_STUDENT_RECORDS];

 StudentRecord2* ptrVar3;

 StudentRecord3* ptrHead;

 StudentRecord3* ptrTail;

 int i;

 int varInt;

 float varFloat;

/*

 Illustration of access to local structure member variables.

*/

 strcpy(var1.Name, "My Name1");

 var1.Age = 20;

 strcpy(var2.Name, "My Name2");

 var2.Age = 30;

/*

 Illustration of for loop.

*/

 for(i=0; i<MAX_STUDENT_RECORDS; i++)

 {

 allStudents[i].Age = i+20;

 }

Version 1.3.7 Page 57 of 175

/*

 Illustration of how pointers and arrays are similar.

*/

 ptrVar3 = allStudents;

/*

 Illustration of while loop.

*/

 i=0;

 while(i < MAX_STUDENT_RECORDS)

 {

ptrVar3 = &allStudents[i];

 printf("Student %d Age = %d\n", i, ptrVar3->Age);

 i++;

 }

/*

 Illustration of linked list creation.

*/

 ptrHead = ptrTail = NULL;

 for(i=0; i<MAX_STUDENT_RECORDS; i++)

 {

 if(ptrHead == NULL)

 {

 ptrHead = malloc(sizeof(StudentRecord3));

 ptrTail = ptrHead;

 ptrTail->NextRecord = NULL;

 ptrTail->Age = i+20;

 }

 else

 {

 ptrTail->NextRecord = malloc(sizeof(StudentRecord3));

 ptrTail->NextRecord->Age = i+20;

 ptrTail->NextRecord->NextRecord = NULL;

 ptrTail = ptrTail->NextRecord;

 }

 }

/*

 Illustration of linked list traversal.

*/

 ptrTail = ptrHead;

 while(ptrTail)

 {

 printf("Student %d Age = %d\n", i, ptrTail->Age);

 ptrTail = ptrTail->NextRecord;

 }

/*

 Illustration of freeing of dynamic allocations.

*/

 while(ptrHead)

 {

Version 1.3.7 Page 58 of 175

 ptrTail = ptrHead;

 ptrHead = ptrTail->NextRecord;

 free(ptrTail);

 }

 ptrTail = ptrHead;

 varInt = 20;

 varFloat = 1.2;

/*

 Passing by reference and by value.

*/

 TestFunction(&varInt, varFloat);

/*

 Exit main function.

*/

 return 0;

}

/*

 Function Definition.

*/

void TestFunction(int* var1, float var2);

{

 *var1 = 10;

 var2++;

 return;

}

Singly Linked List Implementation

Create a singly linked list with 10 elements and remove element 5.

<Sample 3>

/* Include all the headers needed for the functions used */

#include <stdio.h>

#include <malloc.h>

/* Declare a structure representing the linked list elements */

typedef struct LL{

 int var1;

 struct LL* nextPtr;

}LLElement;

/* Declare a constant for the number of list elements */

#define MAX_LIST_LENGTH 10

/* Define function prototypes */

LLElement* CreateSinglyLinkedList(int count);

void RemoveElement(LLElement* headPtr, int elementId);

Version 1.3.7 Page 59 of 175

/**

* Main Routine

**/

int main(int argc, char* argv[])

{

 LLElement* headPointer;

 headPointer = CreateSinglyLinkedList(MAX_LIST_LENGTH);

 RemoveElement(headPointer, 5);

 return(0);

}

/**

* CreateSinglyLinkedList function

**/

LLElement* CreateSinglyLinkedList(int count)

{

 /* Define variables of the structure type you just declared */

 LLElement *headPtr=NULL, *ptr, *prevPtr;

 /*Create a Linked List with MAX_LIST_LENGTH elements */

 printf("\nCreating Linked List of length %d\r\n\n", count);

 for(int i=0; i< count; i++)

 {

 ptr = (LLElement*)malloc(sizeof(LLElement));

 if(ptr)

 {

 ptr->var1 = i;

 ptr->nextPtr = headPtr;

 headPtr = ptr;

 }

 }

 /* Walk Linked list */

 printf("\nWalking Linked List\r\n");

 for(ptr=headPtr; ptr ; ptr=ptr->nextPtr)

 {

 printf("Found linked list element %d \r\n",ptr->var1);

 }

 return(headPtr);

}

/**

* RemoveElement function

**/

void RemoveElement(LLElement* headPtr, int elementId)

{

 /* Define variables of the structure type you just declared */

 LLElement *ptr, *prevPtr;

 /* Delete the tagged item */

 printf("\nRemoving Linked List item %d\r\n\n", elementId);

 for(prevPtr=NULL, ptr=headPtr ; ptr ;

Version 1.3.7 Page 60 of 175

 prevPtr=ptr, ptr=ptr->nextPtr)

 {

 if(ptr->var1 == elementId)

 {

 if (prevPtr)

 {

 prevPtr->nextPtr = ptr->nextPtr;

 }

 else

 {

 headPtr = ptr->nextPtr;

 }

 free(ptr);

 /* We can now exit the for loop */

 break;

 }

 }

 /* Walk Linked list */

 printf("\nWalking Linked List\r\n");

 for(ptr=headPtr; ptr ; ptr=ptr->nextPtr)

 {

 printf("Found linked list element %d \r\n",ptr->var1);

 }

 return;

}

Version 1.3.7 Page 61 of 175

Bit operations in C

“Little-endian” refers to the data format where the least significant byte (little end) is represented at the first
(lowest) address and each more significant byte is represented at the next higher address. This
representation requires a reversal of bytes when read by the human eye because addresses are often
displayed in increasing sequence and yet we expect more significant bytes to be displayed first.

“Big-endian” is the opposite of little endian. Here the most significant byte (big end) is represented at the first
(lowest) address. Intel uses the “little endian” representation. Most other processors use the “big endian”
representation. Most TCPIP communications are based on the Big Endian layout. In other words, any 16- or
32-bit value within the various layer headers (for example, an IP address, a packet length, or a checksum)
must be sent and received with its most significant byte first.

As an exercise in using C bit operations, covert a double word initialised in the little-endian format to a big-
endian format.

<Sample 4>

/* Include all the headers needed for the functions used */

#include <stdio.h>

#include <wtypes.h>

/* Define function prototypes */

DWORD LittleToBigEndian(DWORD var1);

/**

* Main Routine

**/

int main(int argc, char* argv[])

{

 DWORD lEndian, bEndian;

 lEndian=0x12345678;

 bEndian = LittleToBigEndian(lEndian);

 return(0);

}

/**

* LittleToBigEndian

**/

DWORD LittleToBigEndian(DWORD var1)

{

 DWORD var2;

 BYTE* bytePtr;

 bytePtr = (BYTE*)&var1;

 printf("Little Endian - Byte0=0x%x Byte1=0x%x Byte2=0x%x

Byte3=0x%x \n",

 bytePtr[0], bytePtr[1], bytePtr[2], bytePtr[3]);

 //Now we convert to Big Endian

 var2 = ((var1&0x000000FF)<<24) | ((var1&0x0000FF00)<<8) |

((var1&0x00FF0000)>>8) | ((var1&0xFF000000)>>24);

Version 1.3.7 Page 62 of 175

 bytePtr = (BYTE*)&var2;

 printf("Big Endian - Byte0=0x%x Byte1=0x%x Byte2=0x%x

Byte3=0x%x \n",

 bytePtr[0], bytePtr[1], bytePtr[2], bytePtr[3]);

 return(var2);

}

Version 1.3.7 Page 63 of 175

Variable Argument Functions

There are times where a function may need to take a variable number of arguments. We have used one
such function extensively in our samples – “printf”. We can pass a variable number of parameters to this
function depending on how many variables we wish to print.

You may have other reasons to use a variable argument function. Sometimes you may want to
accommodate varying argument types. In this case, your first parameter could give you info on what the
second parameter type is going to be.

The difficulty with writing a variable length function is that you are responsible for walking the stack and
picking the parameters passed in. Fortunately C provides some convenient macros to do this for us.

In the sample below we write a simple variable length function that allows us to pass a DWORD or a string
as our second parameter. Note the use of the “va_start”, “va_arg” and “va_end” macros to help us get data
that was passed on the stack.

<Sample 5>

/* Include all the headers needed for the functions used */

#include <stdio.h>

#include <wtypes.h>

/* Define function prototypes */

void VariableLengthArg(DWORD type, ...);

/**

* Main Routine

**/

int main(int argc, char* argv[])

{

 VariableLengthArg(0, 0x12345678);

 VariableLengthArg(1, "This is a string");

 return(0);

}

/**

* VariableLengthArg

**/

void VariableLengthArg(DWORD type, ...)

{

 va_list argList;

 va_start(argList, type);

 switch(type)

 {

 case 0x00:

 DWORD dword;

 dword = va_arg(argList, DWORD);

 printf("DWORD=0x%x\n", dword);

 break;

 case 0x01:

Version 1.3.7 Page 64 of 175

 char* strPtr;

 strPtr = va_arg(argList, char*);

 printf("String=%s\n", strPtr);

 break;

 }

 va_end(argList);

}

Version 1.3.7 Page 65 of 175

String Operations

Write a program that will ask the user for their name and age. Then compare their name against yours and
print their and age on the screen.

Note that all the string functions used here are part of the standard C libraries. You can find the function
signatures for any of these functions using the on-line help in Visual Studio. Highlight the function and press
“F1”.

In the debugger look at the “output” memory location during each of the string operations. Observer that
“strcpy” and “strcat” are appending a NULL at the end of the string. This is how C determines the end of a
string. The memory buffer allocated for a string must always account for a NULL.

Notice the use of the “itoa” function to convert an integer to a string.

<Sample 6>

/* Include all the headers needed for the functions used */

#include <stdio.h>

#include <string.h>

#include <wtypes.h>

/**

* Main Routine

**/

int main(int argc, char* argv[])

{

 char *yourName="Akiko";

 char name[100];

 char output[200];

 unsigned int age;

 char ageAsString[5];

 /* Get the user's name */

 printf("\nPlease enter your first name: ");

 scanf("%s",name);

 /* Get the user's age */

 printf("\nPlease enter your age: ");

 scanf("%d",&age);

 /* Check if you have the same name as the user */

 if(!strcmp(name, yourName))

 {

 printf("\nDid you know that we share the same name?\n");

 }

 /* May the user forgot to uppercase the first letter of a proper

noun*/

 else if(!stricmp(name, yourName))

 {

 printf("\nDid you know that we share the same name? I like

to uppercase the first letter of my name though!\n");

 }

 /* Format your response and print it*/

Version 1.3.7 Page 66 of 175

 strcpy(output, name);

 strcat(output, " is ");

 itoa(age, ageAsString, 10);

 strcat(output, ageAsString);

 strcat(output, " years old\n");

 printf("%s", output);

 /* Format your response the easy way and print it*/

 sprintf(output, "\n%s is %d years old\n", name, age);

 printf("%s", output);

 return(0);

}

Version 1.3.7 Page 67 of 175

#pragma pack

In section 2 we learned how to declare a structure with multiple fields. The compiler will generally try to place
each field within a structure at its “natural boundary”. What this means is that each member of a structure
will be placed at an address that is divisible by the size of the member.

For example, if you have an integer member in a structure, the compiler will ensure that the integer variable
is at an address that is divisible by the size of an integer on the platform (usually 4). If you had a character
member variable, it can be placed at the next available location since its size is 1 byte.

The reason the compiler does this is because it allows the compiler to use mnemonics that are optimized to
deal with a particular data type if the data is located at its natural boundary. These optimized mnemonics
expect variables to be located at their natural boundaries, otherwise they generate an exception that is
commonly referred to as a “data-alignment fault”.

The maximum gap that the compiler will leave between member variables in its attempt to place members
at their natural boundaries is dictated by the “#pragma pack” compiler directive. You can redefine this pack
directive as required within your file.

In the sample below, we define a structure with a character and an integer. Since the integer is 4 bytes on a
PC, the total theoretical size of our structure must be 5 bytes. Let us find that actual size when using the
pack(1) and pack(4) directives.

<Sample 7>

/* Include all the headers needed for the functions used */

#include <stdio.h>

#include <string.h>

#include <wtypes.h>

/* Save the compiler's default pragma pack */

#pragma pack(push)

/* Ask the compiler's to use pragma pack(1) */

#pragma pack(1)

typedef struct

{

 char charVar;

 int intVar;

}PACK_1_STRUCT;

/* Ask the compiler's to use pragma pack(4) */

#pragma pack(4)

typedef struct

{

 char charVar;

 int intVar;

}PACK_4_STRUCT;

/* Restore the compiler's pragma pack */

#pragma pack(pop);

/**

* Main Routine

**/

int main(int argc, char* argv[])

Version 1.3.7 Page 68 of 175

{

 printf("Size of PACK_1_STRUCT = %d\n", sizeof(PACK_1_STRUCT));

 printf("Size of PACK_4_STRUCT = %d\n", sizeof(PACK_4_STRUCT));

 return(0);

}

Version 1.3.7 Page 69 of 175

Example Problems

Problem 1

Consider the following function, written in C:

int AStringFunction(char* stringArgument)
{
 int i = -1;
 while(stringArgument[i+1]) i++;

 return (i+1);
}

What does this function do? Give an example of how it could be used.

Problem 2

 My C program contains the declarion:

char c1 = ‘C’;
char c2 = c1 + ‘a’ –‘A’

what is the value of c2?

Problem 3

Imagine a new data type that is an unsigned integer that occupies 4 bits. What are the
binary and decimal values of the largest and smallest values that can be represented by
this data type?

Problem 4

The main() function of myprog.c has the declaration

int main(int c, char* myArray[]);

I compiled the program with the command

gcc –Wall –g –o myProg myProg.c

When I run the program using the command

Version 1.3.7 Page 70 of 175

./myProg is as fast as any other

What values are stored in “c” and “myArray” in the main()

function?

Problem 5

I have an unsigned int variable x and I want to perform modulo division by

65,536 (I want the remainder from dividing x by 65,536) by using a bit mask.

What bit mask could I use (specify it as a hexadecimal number) and what

operation would I need?

Version 1.3.7 Page 71 of 175

Week 3: Integer Data Representation & Manipulation

Big Endian and little endian

Little endian refers to the format where the least significant byte (little end) is represented at the first
(lowest) address and each more significant byte is represented at the next higher address. This
representation requires a reversal of bytes when read by the human eye because addresses are often
displayed in increasing sequence and yet we expect more significant bytes to be displayed first.

Big endian is the opposite of little endian. Here the most significant byte (big end) is represented at the
first (lowest) address.

Intel uses the “little endian” representation. Most other processors use the “big endian” representation.

Below is an example of how the little endian representation looks like in memory.

Version 1.3.7 Page 72 of 175

Endian swapping code…

inline void endian_swap(unsigned short& x)

{

 x = (x>>8) |

 (x<<8);

}

inline void endian_swap(unsigned int& x)

{

 x = (x>>24) |

 ((x<<8) & 0x00FF0000) |

 ((x>>8) & 0x0000FF00) |

 (x<<24);

}

// __int64 for MSVC, "long long" for gcc

inline void endian_swap(unsigned __int64& x)

{

 x = (x>>56) |

 ((x<<40) & 0x00FF000000000000) |

 ((x<<24) & 0x0000FF0000000000) |

 ((x<<8) & 0x000000FF00000000) |

 ((x>>8) & 0x00000000FF000000) |

 ((x>>24) & 0x0000000000FF0000) |

 ((x>>40) & 0x000000000000FF00) |

 (x<<56);

}

Boolean Algebra

Introduction

It was the Greek philosopher Aristotle who first proposed a system for reasoning and deriving truths.
Aristotle defined a system where one starts with a known truth that is indisputable and always true. This
starting point is referred to as a “premise”. From this premise he then defined a way to derive other
truths by using a method of argumentation that classified a derived statement as either true or false. If a
derived statement was classified as true, then it can effectively be a premise for a subsequent derivation.
The uniqueness of this scheme is that there are only two possibilities for a derived argument. It is either
true or it is false. It cannot be both at the same time. And it cannot be neither true nor false. This system
for deriving truths was defined as “logos” or “logic” and was part of Aristotle’s greater dissertation on
rhetoric which included “ethos” and “pathos”.

It was the British mathematician, George Boole who converted Aristotle logical system of reasoning into a
mathematical form with well-defined mathematical rules for deriving relationships between
mathematical variables that conformed to the limitation that they represented only two possible values –
true or false. This system of mathematics is referred to as Boolean Algebra.

It was almost a hundred years later, in the early 1900s, that Claude Shannon discovered that Boolean
Algebra had an invaluable application in Digital Electronics, where the state of an electronic system was
always defined as a “on” or “off”. At the time George Boole worked on Boolean Algebra, he would have

Version 1.3.7 Page 73 of 175

never imagined the practical value of his efforts. And yet today, Boolean Algebra is indispensable in the
design of digital circuits.

Boolean Arithmetic

Let us start our study of Boolean algebra by defining the possible operations one can use in Boolean
arithmetic. The fundamental rule in Boolean algebra is that a variable can have one of two values – “0” or
“1”. It cannot have any other value. Boolean arithmetic allows for addition and multiplication of Boolean
variables. Note that subtraction and division are disallowed. To allow subtraction, we will need the use of
negative numbers. But remember that Boolean variables can only be a “0” or a “1”. There are no negative
numbers. And division is a compounded form of subtraction and hence that too is disallowed.

The rules for addition are as follow;

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 1
1 + 0 + 1 + 1 + 1 = 1

Note that the first three operations should seem normal for someone used regular arithmetic. However
the last two operations are odd. We have already stated that the only values a variable can have in
Boolean Algebra are a “1” or a “0”. If you add two 1s, the sum cannot be expected to be a “0”. And the
only other option available is “1” and so “1 + 1 = 1” in Boolean algebra. Further it does not matter how
many variables you add, as long as any one of them is a “1” the answer is “1” as shown in the last
operation above.

The rules for multiplication are as follow;

0 x 0 = 0
0 x 1 = 0
1 x 0 = 0
1 x 1 = 1
1 x 0 x 1 x 1 x 1 = 0

When it comes to multiplication, the rules are identical to regular algebra.

Like regular algebra, Boolean variables can also be represented by names. A Boolean variable can be
referred to as “A” or “B” or “C” and so on. And any variable can be defined to have a value of “1” or “0”. If
the variable “A” has a value of “1” then the complement of “A” (also referred to as A-NOT and denoted as
A’) will have its opposite value, which in this case would be a “0”.

In regular arithmetic there are some operations that always have a predefined answer like the addition of
“0” to any variable will not change the value of that variable. These are referred to as identities or always
true. Now let us discuss the identities in Boolean arithmetic. We will use “A”, “B” and “C” as Boolean
variable in the illustrations below.

A + 0 = A
A + 1 = 1
A + A = A
A + A’ = 1

A x 0 = 0

Version 1.3.7 Page 74 of 175

A x 1 = A
A x A = A
A x A’ = 0

Complementing A an even number of times will always result in A.

A + B = B + A (Commutative property for addition)
A x B = B x A (Commutative property for multiplication)

(A + B) + C = A + (B + C) (Associative property for addition)
A x (B x C) = (A x B) x C (Associative property for multiplication)

A x (B + C) = (A x B) + (A x C) (Distributive property)
Addition in Boolean algebra is identical to an “OR” operation in digital design. An “OR” circuit will output a
“1” if any of its input is defined as a “1”.

Multiplication in Boolean algebra is identical to an “AND” operation in digital design. An “AND” circuit will
inspect all the voltage values at its input and define an output of “1” if all the inputs are “1”. If any input is
“0”, the AND logic will output a “0”.

There is one operation in digital design that we have not discussed in the Boolean arithmetic operations
above. This is the exclusive-OR operation. An “exclusive-OR” is the equivalent of (A x B’) + (A’ x B).
Another way of looking at this is to think of this as an “OR” operation with a minor twist that if both A and
B are “1”, then the output is “0”.

Two’s Complement

In mathematics, compliments are used to accomplish subtraction using the addition of positive numbers.

The radix (base) complement of an “n” digit number “x” in base “b” is defined as “bn – x”.

Turns out it is often easier to compute the “diminished compliment” of a number than it is to commute
the “radix compliment” of a number. The “diminished compliment” of a number in base “b” is obtained
by subtracting each digit in the number from “b – 1”.

Finding the compliment of a number once we know the diminished compliment is as easy as adding “1” to
the diminished compliment.

In the decimal base, the compliment of a number is known as 10’s compliment and the diminished
compliment is known as 9’s compliment.

The subtraction of “a” from “b” (b – a) can be accomplished by one of two methods:

1. The diminished compliment of “b” is added to “a” and the diminished compliment of the result is
the answer.

2. The diminished compliment of “a” is added to “b” then a

“1” is added and the leading “1” digit is dropped.

Version 1.3.7 Page 75 of 175

Eg. Let’s evaluate “1900 – 100” using these methods. The diminished compliment of 1900 is 8099 and that
of 0100 is 9899.

So if we wanted to evaluate “1900 – 0100”…

The first method will result in

8099 + 0100 = 8199
the diminished compliment of 8199 is 1800 = 1800.

The second method will result in

 1900 + 9899 = 11799
 The leading “1” digit is dropped and “1” added 11799 - 10000 + 1 = 1800

The above technique will only work when “b” > “a” and both “b” and “a” are positive.

A more generic solution can be obtained if negative numbers are represented by their radix
complements. In this scheme, numbers less than bn/2 are considered positive and the rest are
considered negative whose magnitude can be obtained by taking its radix compliment. For even bases
in this scheme, the value of the most significant digit will determine the sign. If the value is less than
half the possible highest value, it is positive, else negative.

For example if we wanted to represent “-1900” in base 10, we could represent it by the radix compliment
of 1900 which is (8099 + 1) = 8100. Since the most significant digit “8” is greater than 4 we know it is
negative. If we add “1900+8100” we get 10000. If we drop the leading “1” we get “0”.

In binary base, the radix compliment of a number is known as Two’s compliment while the diminished
compliment is known as One’s compliment.

Two’s complement is the way a computer represents signed integers. A two’s complement is gotten by
inverting every bit (diminished compliment) and adding one to the result (compliment).

Version 1.3.7 Page 76 of 175

Let’s use our earlier example to study this is more detail…

Version 1.3.7 Page 77 of 175

Two’s compliment using Boolean logic gates

Sign bit

In signed integer representation the MSb is set to “1” to represent a negative number.

In a 1 byte character, the MSb would have a value of 2^7 (128). So a number like 0x80, has a value of -128
and represents the most negative value possible for a signed character. All the other bits in the character
represent a positive number. So a signed character with a value of 0x7f (127) is the maximum positive
value possible in a signed character. A signed character with a value of -1 would be represented as 0xff (-
128 + 127).
In a 2 byte short, the MSb would have a value of 2^15 (32768). So a number like 0x8000 has a value of -
32768 and represents the most negative value possible for a signed short. All the other bits in the short
represent a positive number. So a signed short with a value of 0x7fff (32767) is the maximum positive
value possible in a signed short. A signed short with a value of -1 would be represented as 0xffff (-32768 +
32767).

In a 4 byte integer, the MSb would have a value of 2^31 (2, 147, 483, 648). So a number like 0x8000 0000
has a value of -2, 147, 483, 648 and represents the most negative value possible. All the other digits
represent a positive value. So in the example above, 0x7FFF FFF6 (2,147, 483, 638) is a positive number.

As an example, let us take the number “5” and represent it as a 4-bit data type and then find its 2’s
compliment and see if the sign bit is getting set.

5 0101
1’s compliment 1010
2’s compliment 1011

The sign bit is set. Let’s evaluate the value of this 2’s compliment…

 (1 x 23) + (0 x 22) + (1 x 21) + (1 x 20)
 8 + 0 + 2 + 1 = 11

The above calculation represents the unsigned value of the 2’s compliment of 5 as a 4-bit representation.

Version 1.3.7 Page 78 of 175

 (-1 x 23) + (0 x 22) + (1 x 21) + (1 x 20)
 -8 + 0 + 2 + 1 = -5

The above calculation represents the signed value of the 2’s compliment of 5 as a 4-bit representation.

Now let’s do the same calcultion with a 8-bit data type…

5 0000 0101
1’s compliment 1111 1010
2’s compliment 1111 1011

The sign bit is set. Let’s evaluate the value of this 2’s compliment…

(1 x 27) + (1 x 26) + (1 x 25) + (1 x 24) + (1 x 23) + (0 x 22) + (1 x 21) + (1 x 20)
128 + 64 + 32 + 16 + 8 + 0 + 2 + 1 = 251

The above calculation represents the unsigned value of the 2’s compliment of 5 as a 8-bit representation.

(1 x 27) + (1 x 26) + (1 x 25) + (1 x 24) + (1 x 23) + (0 x 22) + (1 x 21) + (1 x 20)
-128 + 64 + 32 + 16 + 8 + 0 + 2 + 1 = -5

The above calculation represents the signed value of the 2’s compliment of 5 as a 8-bit representation.

Notice the difference in the 2’s complement representation in “-5” in the 4-bit and 8-bit data types…

2’s compliment of -5 as a 4-bit data type 1011
2’s compliment of -5 as a 8-bit data type 1111 1011

Sign extension

To maintain the integrity of a signed number as you cast the number from a lower size data type to a
higer size data type, you need to extend the sign bit to consume all the new bits added as shown the
example above.

Signed vs. Unsigned in C

In expressions containing a combination of signed and unsigned numbers, C implicitly casts the signed
argument to unsigned and performs the operations assuming all variables are unsigned. This can lead to
unintended consequences for relational operators such as > and <.

See practice problem 2.25 in the text… If “length” is ‘0’, this program will cause an access violation…

float sum_elements(float a[], unsigned length)
{
 int i;
 float result =0;

 for (i=0; i<= length-1; i++)
 {

Version 1.3.7 Page 79 of 175

 result += a[i];
 }

 return result;
}

Memory address Ranges based on number of address lines

0x0000 0001 = 1
0x0000 0010 = 16
0x0000 0100 = 256
0x 0000 1000 = 4,096 (4 KB)
0x 0001 0000 = 65, 536 (65 KB)
0x 0010 0000 = 1, 048, 576 (1 MB)
0x 0100 0000 = 16,777,217 (16 MB)
0x 1000 0000 = 268, 435,456 (256 MB)
0x 2000 0000 = 536, 870, 912 (512 MB)
0x 4000 0000 = 1, 073, 741 824 (1 GB)
0x 8000 0000 = 2, 147, 283, 648 (2 GB)
0x1 0000 0000 = 4, 294, 967, 296 (4 GB)

64-bit systems can theoritically access 16.8 million terabytes of memory, but most only access 1 terabyte.

Size limitations of finite size arithmetic

Discuss unsigned addition, Two’s complement addition, unsigned multiplication, Two’s complement
multiplication, Multiplying by constants.

Example Problems

Problem 1
On an Intel computer, a variable of type int is stored at address 0x1000. The contents of
that part of memory is as shown below. What integer value is stored in variable x? Write
your answer as a hexadecimal number.

Address 0x1000 0x1001 0x1002 0x1003

Contents 0x10 0x11 0xF3 0x05

Problem 2

What is the result of the following C operation? Write your answer in

hexadecimal.

Version 1.3.7 Page 80 of 175

0x8F ^ 0x70

Problem 3

what is the result of the following C operation? Write your answer in

hexadecimal.

0x12 && (~0x0F)

Problem 4

Consider the following declaration in the C language:

char c = 0xE2;

What is the decimal value of c?

Problem 5

What is the value of x after the following statement?

unsigned int x = 0x A4;

x = x – ((x>>4) <<4);

Problem 6

Suppose we have a data type for 6-bit 2’s complement numbers. What are the

binary and decimal values for the smallest negative and largest negative values

that could be represented?

Version 1.3.7 Page 81 of 175

Week 4: Floating point Data Representation &
Manipulation

Rational and Irrational numbers

Any number that can is represented in the number line is a real number.

A rational number is a number that can be expressed as a ratio of two integers. All

rational numbers are real numbers.

Numbers that are real, but can’t be expressed as a ratio of two integers are irrational

numbers.

IEEE 754 Floating point representation

Assume we had a number 5.6 in decimal. The value of this number is really expressed as

(5 x 100) + (6 x 10-1)

Essentially every digit to the right of the decimal point is taken as a negative exponent

power of the base we are dealing with.

What are our options for storing this number in memory?

One option may be to break up the number into the whole number and the fraction and

store them separately. But that option does not lend itself to the exponent arithmetic

possible if we stored the fraction and an exponent separately. Further it would not be an

efficient use of memory for large numbers with a large number of zeros.

As it turns out, the IEEE 754 Floating-point standard represents a number as follows:

 V = (-1)s x M x 2E

Where …

• S represents a single sign bit

• M is the Significand or the fractional part of the number

• E is the exponent that weights the value by a power of 2

Version 1.3.7 Page 82 of 175

A single precision floating point number uses bits 0 to 22 to represent the fractional part

of the number while using bits 23 to 30 to represent the exponent part. Bit 31 is reserved

for the sign bit.

A double precision floating point number uses bits 0 to 51 to represent the fractional part

of the number while using bits 52 to 62 to represents the exponent part. Bit 63 is reserved

for the sign bit.

The values encoded by the above format can be categorized into 3 different cases:

Normalized

Exponent bit pattern is neither all zeros nor all ones. Exponent is interpreted as

representing a signed integer in biased form where E = e – Bias. “e” is the

unsigned number in the exponent bits and Bias is a bias value of 2k-1 -1

(where “k” represents the number of bits used for the exponent. 127 for

single precision and 1023 from double precision). This yields exponents in

ranges -126 to + 127.

With 8 bits to represent the exponent and not allowing all bits to be set, the largest

number you can get is 254. If you subtract a bias of 127 from that you get +127.

With 8 bits to represent the exponent and not allowing all bits to be set to zero, the

smallest number you can get is 1. If you subtract 127 from that you get -126.

Hence the range of exponent values in the normalized form are -126 to +127.

Note that the use of a bias for the exponent as opposed to the 2’s compliment

is designed to allow sorting of the raw floating point numbers correctly.

Generally positive and negative representation is allowed by the radix

compliment. But if we use the radix complement, then negative numbers will

appear larger in a raw comparison.

The fractional value is represented as 0 <= f < 1 and the significand M is defined

as “1 + f”. This is called an implied leading “1” and designed to gain one extra bit

of precision.

The final value is (1+f)x2E (Note E is e – Bias, f is the fractional portion).

As an exercise, try and find the float representation if you were to apply the same

standard for a 16-bit float data. Assume 1 sign bit, 4 exponent bits and the balance

for the fractional portion.

Denormalized

When an exponent field is all zeros, the represented number is in the

denormalized form. In this case “E” is “1-Bias” and M=f.

Version 1.3.7 Page 83 of 175

Denormalized values provide a way to represent “0.0”, since we have a “0” from

the fractional part. Note that for normalized values M was always >=1. Note that

in the IEEE 754 standard, there is +0.0 and -0.0.

Denormalized values also provide a way to represent numbers very close to “0.0”.

Special Cases

The last category is when the exponent field is all “1’s”. When the fraction field is

all zeros, the resulting values represents infinity (+ve or –ve).

When the fraction field is nonzero, the result is not a number and is referred to as

“NaN”.

Examples of a Normalized Representation

Example 1: Convert 0.1 to Single precision using long division

In decimal when we say “0.1”, what we mean in “1/10” (one-tenth). Another way to

represent this would be

(0 x 100) + (1 x 10-1)

Essentially all digits to the right of the decimal point take on a negative power of base 10.

What would “0.1” look like if we represented it as a fraction in binary? To do this we

would have to divide “1” (110 in binary) by “1010” (1010 in binary) as follows:

 0.00011

 1010|1.000000

 0

 10

 0

 100

 0

 1000

 0

 10000
 1010

 1100

 1010

 100

Version 1.3.7 Page 84 of 175

Notice how a terminating sequence in the decimal representation (0.1), turns out to be a

non-terminating sequence in the binary fraction representation (0.0001100110011…). An

easy way to tell if a binary representation of decimal fraction will terminate is to

check if the denominator in the lowest form of the fraction is a power of 2. If it is, it

will terminate. If it is not, it will not terminate. Take “1/8” as an example. “8” is a

power of “2” and so the binary representation will terminate.

If we wanted to represent “0.00011001100112” (“0.110”) as a single precision floating

point, we know the Significand has an implied “1”. So we can move the decimal point

by four to the right and get 1.100110011…2. The Significand then become

“1001100110011…”.

The exponent “E” is “-4” since we moved the decimal point by four places. If “E” is “-4”

then “e” is “-4 + 127” which is 12310 or 11110112.

Since the sign is positive, the Sign bit will be 0.

So the single precision representation for 0.1 is

0 0111 1011 100 1100 1100 1100 1100 1100
 <Sign> <8-bits exponent> <23 bits Significand>

Example 2: Convert 6.125 to Single precision using easier method

In decimal when we say “6.125”, what we mean in “6 and 125/1000”. Another way to

represent this would be

(6 x 100) + (1 x 10-1) + (2 x 10-2) + (5 x 10-3)

Essentially all digits to the right of the decimal point take on a negative power of the base

10.

Step 1: Convert Decimal to Becimal

An easy way to convert “6.125” in decimal to binary is to convert the “6” and “125”

separately as follows. For the integral part “6”, divide by the target radix repeatedly and

save the remainder in reverse order. For the fractional part “.125”, multiply by the target

radix repeatedly and save the whole number in the same order. Note that if the whole

number becomes greater than “0”, subtract “1” from the whole number prior to the next

multiplication.

6/2 quotient = 3, remainder = 0

3/2 quotient = 1, remainder = 1

1/2 quotient = 0, remainder = 1

Hence 6 in binary is “110”

Version 1.3.7 Page 85 of 175

.125 x 2 = 0.25 ➔ whole number is 0

.25 x 2 = 0.5 ➔ whole number is 0

.5 x 2 = 1.0 ➔ whole number is 1

.0 x 2 = 0.0 ➔ subtract 1 from the whole prior to multiplication

Note any further multiplication by 2 will lead to a “0” for the LSb.

Hence .125 in binary is “001”.

6.12510 can thus be represented as 110.0012

Step 2: Convert Becimal to Mantissa Exponent format

110.0012 is the same at (1.10001 x 102)2. This tells us the Mantissa is “100012”

(remember to remove the implied “1”) and the exponent “E” is 2.

Step 3: Calculate Bias

In Single precision, there are 8 bits for the exponent. Hence the Bias is 2(8-1)-1 = 127.

Step 4: Evaluate “e” from “E”

e = E + Bias = 2 + 127 = 12910 = 100000012

Step 5: Evaluate sign bit

If number is positive, sign bit is “0”. If number is negative sign bit is “1”. In this case

sign bit is “0” since the number is positive.

To represent 6.125 as a Single Precision float, we can move the decimal point to the left

by two places to get “1.10001”. This will make the Significant “10001” and the exponent

will be “2 + 127” or 129 or 1000 0001.

0 1000 0001 100 0100 0000 0000 0000 0000
 <Sign> <8-bits exponent> <23 bits Significand>

Example 3: Convert Single precision 0xBFC00000 to a float

0xBFC0 0000 translates to the following…

1 0111 1111 100 0000 0000 0000 0000 0000
 <Sign> <8-bits exponent> <23 bits Significand>

Step 1: Identify classification of floating point

Version 1.3.7 Page 86 of 175

The exponent is neither all zeros nor all 1s. So this is a normalized floating point.

Step 2: Evaluate Bias

There are 8 bits for the exponent, hence the Bias is 2(8-1) – 1 = 128 – 1 = 127.

Step 3: Evaluate exponent “E” from “e”

e = 0111 11112 = 12710 ➔ E = e – Bias = 127 – 127 = 0.

Step 4: Evaluate Becimal representation

Adding the implied “1” to the mantissa and multiplying by the exponent we get:

(1.1 x 100)2 = 1.12

Step 5: Convert Becimal to Decimal and add sign if necessary

(1 x 20) + (1 x 2-1) = 1.5

Since the sign bit is set, the normalized number is -1.5.

Adding two floating point numbers

To add two floating point numbers, we must alter the exponent of the number with the

lower exponent to match that of the number with the higher exponent. To achieve this we

must alter the position of the decimal point. Let’s take the following two numbers from

our previous examples:

 0 1000 0001 100 0100 0000 0000 0000 0000 (6.12510 = (1.10001 x 22)2)

0 0111 1011 100 1100 1100 1100 1100 1101 (0.110 = (1.10011 x 2-4)2)

1.10001 x 22 6.12510

0.00000110011 x 22 0.110

1.10001110011 x 22

 0 1000 0001 1000111 0011 0000 0000 0000 (6.22510 = (1.10001110011x22)2)

Version 1.3.7 Page 87 of 175

Multiplying two floating point numbers

Multiplication of two floating point numbers is achieved by multiplying the significands,

adding the exponents and then normalizing. Couple of things to note:

1) When doing the multiplication, you will get carry-ies of greater than “1”. In that

case, note that the carry will move to the column representing the digit of the

carry.

2) The position of the binary point will be the sum of the binary positions of the two

numbers.

Tool

This site has a great tool to see how floating point bits are set.

Example of precision issues with floating points

Practice Problem 2.46 shows a real life example of disasters that can occur with precision

issues that are inherent in floating point numbers.

The U.S. Patriot Missile battery in Dharan failed to intercept an Iraqi Scud missile and

led to the loss of life of 28 soldiers.

The problem has to do with a counter that increments by “1” every 1/10 of a second. To

calculate the time in seconds, the program would multiply the counter by a 24-bit

representation of 1/10.

As noted previously, the floating point representation of “1/10” is a non-terminating

sequence that looks like this…

0.0001100110011[0011] // portion in bracket repeats indefinitely.

The lack of precision in representing 1/10 with that many bits is about 9.54 x 10-8.

But if the machine was running for 100 hours and if the error in precision was

cumulative, the error would be (9.54 x 10-8 x 100 x 60 x 60 x10) which is approximately

0.343 seconds. For a missile travelling at 2,000 meters/s, that would translate to an error

of 687m!

https://www.h-schmidt.net/FloatConverter/IEEE754.html

Version 1.3.7 Page 88 of 175

Example Problems

Problem 1

Suppose we have a floating-point 9-bit number format for which the most
significant bit is used for the sign, the next 4 bits are used for the exponent and
the remaining 4 bits for the fraction. Using the IEEE 754 convention for
normalized, de-normalized and special numbers, what is the floating-point value
of bytes containing the hexadecimal numbers: 0x084, 0x1F0.

Hints:
Step 1: Identify classification of floating point
Step 2: Evaluate Bias
Step 3: Evaluate exponent “E” from “e”
Step 4: Evaluate Becimal representation
Step 5: Convert Becimal to Decimal and add sign if necessary

Problem 2

A floating point representation that conforms to the IEEE 754 standard uses 4
bits for the Mantissa and 2 bits for the exponent. The raw value in a variable of
this type is 0x7D. What is the decimal (base 10) value represented by this
number? .

Hints:
Step 1: Identify classification of floating point
Step 2: Evaluate Bias
Step 3: Evaluate exponent “E” from “e”
Step 4: Evaluate Becimal representation
Step 5: Convert Becimal to Decimal and add sign if necessary

Problem 3

A floating point representation that conforms to the IEEE 754 standard uses 4
bits for the Mantissa and 3 bits for the exponent. You assign a decimal value of -
26.5 to a variable of this type. What would the raw bits in this variable be?

Hints:
Step 1: Convert Decimal to Becimal

Step 2: Convert Becimal to Mantissa Exponent format

Step 3: Calculate Bias

Step 4: Evaluate “e” from “E”

Step 5: Evaluate sign bit

Version 1.3.7 Page 89 of 175

Week 5: Machine-Level Representation of Code –Part I

A Historical Perspective

Computers execute “machine code” which are sequences of bytes. These sequences of bytes are
encodings of low level operation that manipulate data, manage memory, read and write data on storage
devices and communicate over networks.

A compiler converts a high level language into Assembly code and Assembly code is converted to Machine
code using an assembler and linker.

The abstraction of Machine code provided by a high level language is very useful in reducing the amount
of effort required by a programmer in considering the nuances of Machine code. Modern compilers are
very efficient and generate Assembly code that is often as efficient as code that written by a good
Assembly programmer.

So why bother learning Assembly? Code optimization of critical sections of code, understanding the
consequence of compiler optimization flags, understanding the location of various data in memory,
understanding attack surfaces etc. are common reasons justifying understanding Assembly programming.
The focus now is to learn how to read Assembly code rather than to write it.

Our focus in this course will be to use the x64-bit Architecture as an example architecture to study
Assembly programming. The x64 Architecture takes its root in the Intel 8086 architecture originally
marketed in 1978.

Here is the history form section 3.1 in the text:

8086 – 1978, 29K transistors
80286 – 1982, 134K transistors
i386 - 1985, 275K transistors
i486 – 1989, 1.2M transistors
Pentium – 1993, 3.1M transistors
Pentium Pro – 1995, 5.5M transistors
Pentium/MMX – 1997, 5.5M transistors
Pentium II – 1997, 7M transistors
Pentium III – 1999, 8.2M transistors
Pentium 4 – 2000, 42M transistors
Pentium 4E – 2004, 125M transistors
Core 2 – 2006, 291M transistors
Core i7, Nehalam – 2008 781M transistors
Core i7, Sandy Bridge – 2011, 1.17G transistors
Core i7, Haswell – 2013, 1.4G transistors

Moore’s law predicted doubling of transistor density every year for the next decade in paper in 1965. In
reality we doubled every 18 months for the last 50 years!

Version 1.3.7 Page 90 of 175

Program Encodings

Use the -Og option to compile with minimal optimizations
Use the -S option to stop after compilation but before assembling to generate an Assembler file.

Save the following in a file called mstore.c

long mult2(long, long);

void multstore(long x, long y, long* dest)
{
 long t = mult2(x, y);
 *dest = t;
}

Compile using the command line….

 Gcc -Og -S mstore.s

Look at the mstore.s file…

 .file "mstore.c"
 .text
 .globl multstore
 .type multstore, @function
multstore:
.LFB0:
 .cfi_startproc
 pushq %rbx
 .cfi_def_cfa_offset 16
 .cfi_offset 3, -16
 movq %rdx, %rbx
 call mult2
 movq %rax, (%rbx)
 popq %rbx
 .cfi_def_cfa_offset 8
 ret
 .cfi_endproc
.LFE0:
 .size multstore, .-multstore
 .ident "GCC: (Ubuntu 4.8.4-2ubuntu1~14.04.3) 4.8.4"
 .section .note.GNU-stack,"",@progbits

Now compile with the following command to generate the object file…

 Gcc -Og -c mstore.c

Now run the disassembler program “objdump” to inspect the contents if the object file…

Version 1.3.7 Page 91 of 175

• X64 instruction range in size from 1 to 15

• Unique decoding bytes into machine code

• Disassembler translates machine code into assembler purely based on the codes

• Expect dissassembler naming conventions to be a little different

Now change the C file to be a fully linkable file…

#include <stdio.h>

void multstore(long, long, long*);

int main()
{
 long d;
 multstore(2, 3, &d);
 printf("2 * 3 %ld\n", d);

 return(0);
}

long mult2(long a, long b)
{
 long s = a *b;
 return s;

}

Object and Executable File Formats

Object files and Executable files have specific formats that allow the loader in an operating system to
parse the contents. These formats remain the same even when the underlying machine code embedded
in them vary based on different architectures that they are compiled for (eg. x64 vs. x32).

The Windows Operating System uses a format known as Portable Executable Common Object File Format
(PE COFF). This is an improvement over an older COFF format. The Portable indicates that the format of
the file does not change even when the code it contains varies based on the architecture in use.

Version 1.3.7 Page 92 of 175

The GCC compiler in Linux uses the Executable and Linkable Format (ELF). ELF replaces the older a.out and
COFF in many Unix based environments. More information on this format is available here.

You can save the output of objdump into a file and look at the disassembled contents as shown above. This will tell
you the format used to store your executable.

Data Formats

Char Byte
Short Word
Int Double word
Long Quad word
Char* Quad word
Float Single precision
Double Double precision

Accessing Information

X64 Registers

The x64 processor has the following types of Registers:

64-bit General Purpose Registers – RAX, RBX, RCX, RDX, RBP, RDI, RSP and R8 to R15
Pointer Registers – RIP, RSP
Flags Registers – RFLAGS
Floating Point Registers – FPR0 to FPR7

In addition to the above there are segment registers (not commonly used in x64), Control registers,
memory management registers, debug registers, virtualization registers, performance registers etc.

General Registers:

https://elinux.org/Executable_and_Linkable_Format_(ELF)

Version 1.3.7 Page 93 of 175

A byte is defined as 8 bits, a word is 16 bits, a double word is 32 bits, a quadword is 64 bits and a double
quadword is 128 bits. Intel uses the “little endian” format where lower significant bytes are stored in
lower memory addresses.

For the first eight registers, replacing “r” with “e” will allow you to access the double words at the lower
significant addresses.

For the RAX, RBX, RCX, and RDX registers removing the “r” will allow you to access the words at the lower
significant addresses.

Index Registers:

Some computer instructions operate on contiguous memory locations starting at a particular address and
for a certain size. A common example would be an instruction that copies a string (an array of characters
that often ends with a NULL character) from one location in memory to another location. This instruction
would need the start address of the source string, the length of the source string and the start address of
the destination string. The instruction can then index with reference to the start address of the source
and destination locations to access each subsequent memory location.

The “RSI” and “RDI” are both 64-bit registers that are commonly used as source and destination index
registers.

Pointer Registers:

“RSP” is the 64-bit Stack Pointer register.

“RIP” is the 64-bit Instruction Pointer register.

“RBP” is the 64-bit Base Pointer register, that is commonly used by functions to save the “RSP” register
before reusing the “RSP” register to allocate memory on the stack of local variables.

Flags Register:

The CPU stores the results of certain operations in the “RFLAGS” register. The following defines the 8
commonly used flag bits in the flags register:

Symbol Bit Name Set if

CF 0 Carry Operation generated a carry or borrow

PF 2 Parity Last byte has an even number of 1’s, else 0

AF 4 Adjust Carry or borrow out of the four least significant bits (BCD support)

ZF 6 Zero Result was 0

SF 7 Sign Most significant bit of results is 1

IF 9 Interrupt Interrupt Enable

DF 10 Direction Direction string instructions operate (increment or decrement)

OF 11 Overflow Overflow on signed operation

Common uses of registers:

RDI – Arg 1
RSI – Arg 2
RDX – Arg 3
RCX – Arg 4

Version 1.3.7 Page 94 of 175

R8 – Arg 5
R9 – Arg 6

RAX – return

RSP – stack pointer

RIP – instruction pointer

EFLAGS - flags

X64 Addressing Modes
There are multiple assemblers available for x86 and some have substantially different formats. AT&T
format is what the text uses and we will stick to that format in this set of notes. The GNU Assembler (GAS)
conforms to the AT&T format and that is the Assembler we will use in this course. Know that another
common flavor is the Intel format and the Assemblers that conform to the Intel format use the NASM or
MASM Assemblers.

Register Addressing Mode

This involves accessing data in registers. It is a very common and straight forward technique and we have
used it in almost all the samples thus far. The following is an example of Register Addressing mode.

mov %rax, %rbx

Here we are moving the contents of the “RAX” register into the “RBX” register.

Immediate Addressing Mode

When a data value is a constant, it can be made available as an operand. The following is an example of
an Immediate Addressing Mode.

 mov $9, %rcx

This instruction moves “9” to the “RCX” register.

Direct Addressing Mode

If we wanted to access memory at a known address, we could enclose the known address in parenthesis
and offer that as our operand. The following is an example of direct addressing.

 mov (0x4000b0), %rax

Version 1.3.7 Page 95 of 175

Here we move the contents at memory address 0x4000b0 into the RAX register. Note that for this mode
you don’t really need to add the parenthesis either.

Register Indirect Addressing Mode

Sometimes a register contains an address of a memory location. In these cases we can access the value at that
address by enclosing the register in parenthesis and use that as our operand.

 mov $0x4000b0, %rax
 mov (%rax), %rbx

Here we move the contents of memory whose address is in the “RAX” register to the “RBX” register.

Register Indirect Indexed Addressing Mode

The register indirect addressing mode can be extended to access elements of an array for example, by
using the following syntax;

 mov $0x4000b0, %rax
 mov 0x10(%rax), %rbx

This will fetch the contents of memory at the address defined by the “RAX” register plus 0x10 and move it
to RBX.

Other variations include the following:

 mov (%rax,%rbx), %rcx ➔ Mem[%rax+%rbx] -> %rcx
 mov (%rax, %rbx, 5), %rcx ➔ Mem[%rax + 5*%rbx] -> %rcx
 mov 0x10(%rax, %rbx, 5), %rcx ➔ Mem[%rax + 5*%rbx + 0x10] -> %rcx

The most general form is as follows:

Displacement(baseRegister, indexRegister, scale)

➔

Mem [baseRegister + (Scale * indexRegister) + Displacement]

Note the “lea” instruction allows you to calculate the exact location represented by any addressing mode.
“lea” does not actually dereference the memory.

 lea 0x10(%rsp), %rdi => rdi = rsp + 0x10

Version 1.3.7 Page 96 of 175

Assume you had C code that assigns an address of an element in an array to some pointer variable. In this
case you don’t need to access the array element in memory. You only need the address of it. “lea” is a
good instruction to compute that.

Data Movement Instructions

Mov copies a value from source to destination. The source can be an immediate value, a register, or a
memory. The destination is either a register or a memory location. At most one of source or destination
can be memory. The suffix (b, w, l, q) indicates how many bytes are involved in the move (1, 2, 4 and 8
respectively)

mov[b,w,l,q] Source Destination

movzbw
movzbl
movzwl
movzbq
movzwq

movsbw
movsbl
movswl
movsbq
movslq

mov $-1, %di ➔ Only 2 bytes are set in rdi
movzwq %di, %rbx ➔ rbx is 0xffff
movswq %di, %rbx ➔ rbx is -1

Note that a mov to a 64-bit register by default does a zero extend.

push src ➔ rsp=rsp-8; (%rsp)=src
pop src ➔ src =(%rsp); rsp=rsp+8;
leaveq ➔ rsp = rbp; pop %rbp
callq ➔ push RA and change %rip
retq ➔ pop %rip

cwtl ➔Sign extend %ax to %eax
cltq ➔Sign extend %eax to %rax (movslq %eax, %rax)
cqto ➔Sign extend %rax to %rdx:%rax

Arithmetic and Logical Operations

add src, dst ➔ dst += src
sub src, dst ➔ dst -= src
imul src, dst ➔ dst *= src
neg dst ➔ dst = -dst

and src, dst ➔ dst &= src

Version 1.3.7 Page 97 of 175

or src, dst ➔ dst |= src
xor src, dst ➔ dst ^= src
not dst ➔ dst = ~dst

shl count, dst ➔ dst <<= count (logical – sign bit not preserved)
sal count, dst (arithmetic left shift)

shr count, dst ➔ dst >>=count (logical – sign bit not preserved)
sar count, dst (arithmetic right shift)

ror src, dest
rol src, dest

Three kinds of shift Operations – logical, Arithmetic, Rotate

Logical Right:

1) Move bits to right
2) Lose bits popping off to the right
3) Add “0”s into the MSbs

Logical Left:

1) Move bits to the left
2) Lose bits popping off to the left
3) Add “0”s into the LSbs

Arithmetic Right:

1) Move bits to the right
2) Lose bits popping off to the right
3) Copy the original MSb to the new MSb (sign extension)

Arithmetic Left:

1) Move bits to the left
2) Lose bits popping off to the left
3) Add “0” into the LSbs (no different from Logical Left)

Rotate Right:

1) Move bits to the right
2) Take bits that pop on the LSb and move them into the MSb

Rotate Left:

1) Move bits to the left
2) Take bits that pop on the MSb and move them into the LSb

Special Arithmetic Operations

imulq src ➔ Signed multiply of %rax by src. Result in %rdx:%rax
mulq src ➔ Unsigned multiply of %rax by src. Result in %rdx:%rax

idivq src ➔ Signed divide %rdx:%rax by src.

Quotient stored in %rax.
 Remainder stored in %rdx

Version 1.3.7 Page 98 of 175

divq src ➔ Unsigned divide %rdx:%rax by src
 Quotient stored in %rax
 Remainder stored in %rdx

Your First Computer Program – “Hello World!”

A program is generally written using a text editor. If you don’t have a favorite editor, you can use Notepad++.

Type the following lines of code into your notepad editor, or copy and paste it into the editor.

Assembly Sample 1

#===

File: Sample1.s

Assemble: gcc -c Sample1.s

Link: ld Sample1.o –o Sample1

Run: ./Sample1

#===

Add the global directive so the symbol "_start" is made available

in the object code export table.

If the symbol is not in the export table at link time, the linker

will not know about it.

_start is the default entrypoint for an executable and if the linker

can see it, it will use that as the Entrypoint.

If you want a different entrypoint, you can use the -e link option.

Eg. ld -e main Sample1.o

.global _start

This is the section where the assembler assumes your code is located

.text

__start:

 # write(1, msgStr, msgStrLen)

 # "1" is the sys code for write.

 # Note the "$1" tells the assembler to use the value "1".

 mov $1, %rax

 # "1" is the stdout file handle.

 mov $1, %rdi

 # Address of string to output.

 # Note here we are passing a variable prefixed by "$".

 # The Assembler will replace $msgStr with the address of msgStr.

 mov $msgStr, %rsi

 # Number of bytes in msgStr.

 # Note here we are passing a constant.

 # Invoke operating system to do the write.

 mov $msgStrLen, %rdx

 # System call 60 is exit.

 syscall

 # exit(0)

 # We want return code 0.

 # Invoke operating system to exit.

 mov $60, %rax

 xor %rdi, %rdi

 syscall

This is the section where the assembler expects initialized data

https://notepad-plus-plus.org/download/v7.5.1.html

Version 1.3.7 Page 99 of 175

Data types recognized include .byte (1 byte), .short (2 bytes), .long (4 bytes),

.string or .ascii (length based on length of string). Constants are defined

with the “=” sign.

.data

 CR = 13

 LF = 10

 msgStr: .ascii "Hello World!\n"

 msgStrpost: .byte CR, LF

 msgStrLen = .-msgStr

Save the file as “Sample1.asm” and use the following commands to assemble, link and run this code using
GAS…

gcc -c Sample1.s

ld Sample1.o –o Sample1

./Sample1

As an aside, note that there are two common file formats used for object and executable files – COFF and
ELF. COFF stands for Common Object File Format while ELF stands for Executable and Linking Format.
Microsoft Visual C++ compilers generate the COFF format while GCC generates the ELF format.

Debugging a program

Once you get through the Assembler and linker phase and create an executable file, there is always an urge
to run the program and see if it behaves as you expect it to. It is advisable to use a tool called a “debugger”
to walk through the code to ensure that the logic that is being executed is exactly what was intended. A
debugger allows you to walk over (trace) individual instructions and confirm the output of each instruction.

“gdb” is GNU debugger available on Linux. To load “Sample1.exe” in the debugger, type “gdb <filename>”
in the directory where sample1.exe is located.

You can now set a breakpoint at the start of the program (“main”) and run to the breakpoint…

Once you hit the breakpoint, you can disassemble the program and look at how the Assembler assembled
your code…

Version 1.3.7 Page 100 of 175

Note the code at offset +14. The Assembler is using the address of “msgStr”, whereas in the code in offset
+21, it is using the value of the constant “msgStrLen”.

Now look at the value of the rax register before you execute your “mov” instruction…

Now set a breakpoint right after the first move instruction and step over the “mov” instruction and observe
the register again…

Learn some of the other command available in gdb to access your variables and get familiar with using the
debugger. It will prove to be the most valuable tool at your disposal. You can find some of the gdb
documentation here.

Interacting with the User

In almost any computer program, there is a need to get input from the user of the program. The program’s
behavior is often dependent on the input that is supplied by the user. In this section we will write a sample
that gets input from the user using the Standard Input.

The most efficient way to master any programming language is to practice writing your own sample
programs. Hence I encourage you to study the samples provided in each of these sections and attempt to
duplicate their behavior on your own by using the same or similar instructions.

Another very useful programming technique is to do incremental additions. For example, with the sample
below, you can first try and put up a prompt to the user. Then try and collect information from the user and
then finally try and display the received input. At each of these interim stages, assemble and link your
program to confirm that it is behaving as you would expect.

The only new construct that is introduced in the sample below is the use of the READ function code. This
code indicates to LINUX that you are asking it to read input from the user. The number of characters read by

https://gcc.gnu.org/onlinedocs/gcc-3.3.5/gnat_ug_unx/Introduction-to-GDB-Commands.html

Version 1.3.7 Page 101 of 175

LINUX is going to be available in the AX register. This is also referred to as the “return value”. In the x86
assembler, the return value from any call is usually passed using the AX register.

Once you have studied the following sample, assemble and link the sample using the commands provided in
the header of the sample.

You may observe that in the sample below, I have used the “xor ax, ax” instruction when I wanted to zero
the contents of a register. An “xor” instruction is an exclusive-or operation. So if you apply that operation to
the same register in the source and destination operand fields, you are bound to make the contents of the
register to be zero.

You may wonder why I chose an “xor” over a more direct “mov ax, 0” instruction. This has to do with
efficiency. In the older processors, a “mov” instruction from a memory to a register would use 4 clock cycles
of the CPU, whereas an xor usually cost only 2 clock cycles. Needless to say these sorts of savings are not
worth much (if anything at all) with the increased clock speeds and more efficient instructions of modern
processors.

Assembly Sample 2

#===

File: Sample2.s

Assemble: gcc -c Sample2.s

Link: ld Sample2.o –o Sample2

Run: ./Sample2

#===

.global _start

This is the section where the assembler assumes your code is located

.text

_start:

#write (1, promptMsg, msgLen)

 mov $1, %rax

 mov $1, %rdi

 mov $promptMsg, %rsi

 mov $promptMsgLen, %rdx

 syscall

 #read (0, inputBuffer, bufLen)

 mov $0, %rax

 mov $0, %rdi

 lea (inputBuffer), %rsi

 mov $bufLen, %rdx

 syscall

 #Add and ! and CR to buffer

 lea (inputBuffer), %rsi

dec %rax

 movb $33, (%rax, %rsi, 1)

 inc %rax

 movb $CR, (%rax, %rsi, 1)

 inc %rax

 movb $LF, (%rax, %rsi, 1)

 inc %rax

 mov %rax, (nameLen)

 #write (1, Greetings, GreetingLen)

 mov $1, %rax

 mov $1, %rdi

 mov $Greetings, %rsi

 mov $GreetingLen, %rdx

 syscall

 #write (1, inputBuffer, nameLen)

Version 1.3.7 Page 102 of 175

 mov $1, %rax

 mov $1, %rdi

 mov $inputBuffer, %rsi

 mov nameLen, %rdx

 syscall

 #exit(0)

 mov $60, %rax

 xor %rdi, %rdi

 syscall

#===

.data

 CR = 13

 LF = 10

 bufLen = 100

 promptMsg: .ascii "Enter your name: "

 promptMsgLen = .-promptMsg

 CR_LF_1: .byte CR, LF

 Greetings: .ascii "Hello"

 GreetingLen = .-CR_LF_1

#===

This is the section where the assembler expects uninitialized data

.bss

 .lcomm inputBuffer, bufLen

 .lcomm nameLen, 4

Control operations

Unconditional Jumps (JMP)

An unconditional jump, as the name implies, allows the transfer of execution from one part of your program
to another without any conditions.

All jump instructions work by altering the value of the IP register.

Below is a sample that shows the operation of the Jmp mnemonic. This modifies the previous sample to skip
the greetings message.

Assembly Sample 3

#===

File: Sample3.s

Assemble: gcc -c Sample3.s

Link: ld Sample3.o –o Sample3

Run: ./Sample3

#===

.global _start

This is the section where the assembler assumes your code is located

.text

_start:

Version 1.3.7 Page 103 of 175

#write (1, promptMsg, msgLen)

 mov $1, %rax

 mov $1, %rdi

 mov $promptMsg, %rsi

 mov $promptMsgLen, %rdx

 syscall

 #read (0, inputBuffer, bufLen)

 mov $0, %rax

 mov $0, %rdi

 lea (inputBuffer), %rsi

 mov $bufLen, %rdx

 syscall

 #Add an “!” and CR to buffer

 lea (inputBuffer), %rsi

dec %rax

 movb $33, (%rax, %rsi, 1)

 inc %rax

 movb $CR, (%rax, %rsi, 1)

 inc %rax

 movb $LF, (%rax, %rsi, 1)

 inc %rax

 mov %rax, (nameLen)

 #Unconditional jump

jmp SkipGreetings

 #write (1, Greetings, GreetingLen)

 mov $1, %rax

 mov $1, %rdi

 mov $Greetings, %rsi

 mov $GreetingLen, %rdx

 syscall

SkipGreetings:

 #write (1, inputBuffer, nameLen)

 mov $1, %rax

 mov $1, %rdi

 mov $inputBuffer, %rsi

 mov nameLen, %rdx

 syscall

 #exit(0)

 mov $60, %rax

 xor %rdi, %rdi

 syscall

#===

.data

 CR = 13

 LF = 10

 bufLen = 100

 promptMsg: .ascii "Enter your name: "

 promptMsgLen = .-promptMsg

 CR_LF_1: .byte CR, LF

 Greetings: .ascii "Hello"

 GreetingLen = .-CR_LF_1

#===

This is the section where the assembler expects uninitialized data

.bss

 .lcomm inputBuffer, bufLen

 .lcomm nameLen, 4

Version 1.3.7 Page 104 of 175

Compare (CMP) and test (test) Instructions

Recall the flags register…

Symbol Bit Name Set if

CF 0 Carry Operation generated a carry or borrow

PF 2 Parity Last byte has an even number of 1’s, else 0

AF 4 Adjust Carry or borrow out of the four least significant bits (BCD support)

ZF 6 Zero Result was 0

SF 7 Sign Most significant bit of results is 1

IF 9 Interrupt Interrupt Enable

DF 10 Direction Direction string instructions operate (increment or decrement)

OF 11 Overflow Overflow on signed operation

The compare instruction is essentially a subtract instruction that does not alter the value of the operands
but impacts the value of the flags registers just like a subtract instruction would. We study the compare
instruction because its impact on the flags register is exploited by many Jump instructions.

You can type the following instructions into one of your earlier samples and trace each instruction and see
how it impacts the flags register.

 mov $9, %rax
 mov $8, %rbx
 mov $9, %rcx

 cmp %rax, %rbx

 cmp %rbx, %rax

 cmp %rax, %rcx

The following debugger output shows that the three “mov” instructions did not impact the flags register.

The “cmp %rax, %rbx” involves (%rbx - %rax or “8 – 9”). In signed arithmetic, this leads to “-1”. So we
expect the “CF”, “AF” and “SF” flags to be set…

Version 1.3.7 Page 105 of 175

The “cmp %rbx, %rax” involves (%rax - %rbx or “9 - 8”). In both signed and unsigned arithmetic, this leads
to a +1. So we expect the previously set flags to be cleared...

The “cmp %rax, %rcx” involves “9 – 9”. This will yield “0” and hence the “ZF” and the “PF” flag is set...

The “test” instruction is a similar to the cmp operation in that it does not change the destination, but only
impacts the flags register. The “test” instruction performs a bitwise AND on two operands and modifies
the SF, ZF and PF flags and discards the result of the AND. There are different variations on the test
instruction depending on the type and size of the operands.

Zero or Equality Jumps (JZ, JE, JNZ, JNE)

The Jump Zero (“JZ”) and the Jump Equal (“JE”) instructions do the exact same thing – they both check if
the ZERO flag is set and if it is, they jump to the tag provided in the operand.

Similarly the Jump Not Zero (“JNZ”) and the Jump Not Equal (“JNE”), jump to the tag provided in the
operand if the ZERO flag is not set.

The sample below demonstrates the use of these instructions. Note that I have used the “JE” and “JNE”
instructions. You can replace these with “JZ” and “JNZ” respectively, without altering the behavior.

Instead of moving “8” to the rax register, change the code to move “9” into the ax register and confirm
that the jump to “JUMP_ZERO” tag gets executed.

Note that the Jump instructions do not change the value of the flags register and so we can have multiple
conditional jumps subsequent to the compare instruction.

Assembly Sample 4

#===

File: Sample4.s

Assemble: gcc -c Sample4.s

Link: ld Sample4.o -o Sample4

Run: ./Sample4

#===

.global _start

Version 1.3.7 Page 106 of 175

.text

_start:

 mov $8, %rax

 mov $9, %rbx

 cmp %rax, %rbx

 je JUMP_ZERO

 jne JUMP_NOT_ZERO

JUMP_ZERO:

 mov $1, %rax

 mov $1, %rdi

 mov $zeroMsg, %rsi

 mov $zeroMsgLen, %rdx

 syscall

 jmp EXIT

JUMP_NOT_ZERO:

 mov $1, %rax

 mov $1, %rdi

 mov $nonZeroMsg, %rsi

 mov $nonZeroMsgLen, %rdx

 syscall

EXIT:

 #exit(0)

 mov $60, %rax

 xor %rdi, %rdi

 syscall

#===

.data

 CR = 13

 LF = 10

 zeroMsg: .ascii "Zero Message"

 CR_LF_1: .byte CR, LF

 zeroMsgLen = .-zeroMsg

 nonZeroMsg: .ascii "Non Zero Message"

 CR_LF_2: .byte CR, LF

 nonZeroMsgLen = .-nonZeroMsg

#===

Unsigned Jumps (JA, JAE, JB, JBE)

The Unsigned jumps use the ZERO and CARRY flags.

Jump if Above (“JA”) instruction jumps to the tag provided in the operand if both the ZERO flag and the CARRY flag are
not set. If the ZERO flag is set, we know the numbers used in the last compare were equal. If the CARRY flag was set
we know the last compare involved subtracting a larger number from a smaller number. If neither of these flags were
set, the last compare involved subtracting a smaller number from a larger number. In this case the “JA” instruction
will jump to the tag provided in the operand.

Similarly Jump if Above or Equal (“JAE”) causes a jump if either the Zero flag is set or if CARRY flag is not set.

Jump if Below (“JB”) instruction jumps to the tag provided in the operand if the ZERO flag is not set but the CARRY flag
is set.

Jump if Below or Equal (“JBE”) causes a jump if either the Zero flag is set or if the CARRY flag is set.

Version 1.3.7 Page 107 of 175

Another way to look at these instructions is to consider a compare between unsigned numbers. If the first number is
equal to the second number, the ZERO flag is set. So both the “JAE” and “JBE” will cause a jump in this case.

If the first number is greater than the second number, both the ZERO flag and the CARRY flag are not set. In this case
both the “JA” and “JAE” instructions will cause a jump.

If the first number is less than the second number, the ZERO flag is not set, but the CARRY flag is set. In this case both
the “JB” and “JBE” will cause a jump.

Hence these jump instructions are designed to compare unsigned numbers.

Assembly Sample 5

#===

File: Sample5.s

Assemble: gcc -c Sample5.s

Link: ld Sample5.o -o Sample5

Run: ./Sample5

#===

.global _start

.text

_start:

 mov $8, %rax

 mov $9, %rbx

 cmp %rax, %rbx

 ja JUMP_ABOVE

 jae JUMP_ABOVE_EQUAL

 jb JUMP_BELOW

 jbe JUMP_BELOW_EQUAL

JUMP_ABOVE:

 mov $1, %rax

 mov $1, %rdi

 mov $jumpAboveMsg, %rsi

 mov $JA_MsgLen, %rdx

 syscall

 jmp EXIT

JUMP_ABOVE_EQUAL:

 mov $1, %rax

 mov $1, %rdi

 mov $jumpAboveEqual,%rsi

 mov $JAE_MsgLen, %rdx

 syscall

 jmp EXIT

JUMP_BELOW:

 mov $1, %rax

 mov $1, %rdi

 mov $jumpBelowMsg, %rsi

 mov $JB_MsgLen, %rdx

 syscall

 jmp EXIT

JUMP_BELOW_EQUAL:

 mov $1, %rax

Version 1.3.7 Page 108 of 175

 mov $1, %rdi

 mov $jumpBelowEMsg, %rsi

 mov $JBE_MsgLen, %rdx

 syscall

EXIT:

 #exit(0)

 mov $60, %rax

 xor %rdi, %rdi

 syscall

#===

.data

 CR = 13

 LF = 10

 jumpAboveMsg: .ascii "Jump Above"

 .byte CR, LF

 JA_MsgLen = .-jumpAboveMsg

 jumpAboveEqual:.ascii "Jump Above or Equal"

 .byte CR, LF

 JAE_MsgLen = .-jumpAboveEqual

 jumpBelowMsg: .ascii "Jump Below"

 .byte CR, LF

 JB_MsgLen = .-jumpBelowMsg

 jumpBelowEMsg: .ascii "Jump Below or Equal"

 .byte CR, LF

 JBE_MsgLen = .-jumpBelowEMsg

#===

Signed Jumps (JG, JGE, JL, JLE)

The Signed jumps use the SIGN, ZERO and OVERFLOW flags.

Jump if Greater (“JG”), Jump if Greater or Equal (“JGE”), Jump if Less (“JL”) and Jump if Less or Equal
(“JLE”) are very similar to the “JA”, “JAE”, “JB”, “JBE” instructions respectively. However these apply to
signed numbers.

Assembly Sample 6

#===

File: Sample6.s

Assemble: gcc -c Sample6.s

Link: ld Sample6.o -o Sample6

Run: ./Sample6

#===

.global _start

.text

_start:

 mov $-4, %rax

 mov $-8, %rbx

 cmp %rax, %rbx #%rbx - %rax

 jg JUMP_GREATER

 jge JUMP_GREATER_EQUAL

 jl JUMP_LESS

 jle JUMP_LESS_EQUAL

Version 1.3.7 Page 109 of 175

JUMP_GREATER:

 mov $1, %rax

 mov $1, %rdi

 mov $jumpGreaterMsg,%rsi

 mov $JG_MsgLen, %rdx

 syscall

 jmp EXIT

JUMP_GREATER_EQUAL:

 mov $1, %rax

 mov $1, %rdi

 mov $jumpGreaterEq, %rsi

 mov $JGE_MsgLen, %rdx

 syscall

 jmp EXIT

JUMP_LESS:

 mov $1, %rax

 mov $1, %rdi

 mov $jumpLessMsg, %rsi

 mov $JL_MsgLen, %rdx

 syscall

 jmp EXIT

JUMP_LESS_EQUAL:

 mov $1, %rax

 mov $1, %rdi

 mov $jumpLessEMsg, %rsi

 mov $JLE_MsgLen, %rdx

 syscall

EXIT:

 #exit(0)

 mov $60, %rax

 xor %rdi, %rdi

 syscall

#===

.data

 CR = 13

 LF = 10

 jumpGreaterMsg: .ascii "Jump Greater"

 .byte CR, LF

 JG_MsgLen = .-jumpGreaterMsg

 jumpGreaterEq: .ascii "Jump Greater Equal"

 .byte CR, LF

 JGE_MsgLen = .-jumpGreaterEq

 jumpLessMsg: .ascii "Jump Less"

 .byte CR, LF

 JL_MsgLen = .-jumpLessMsg

 jumpLessEMsg: .ascii "Jump Less Equal"

 .byte CR, LF

 JLE_MsgLen = .-jumpLessEMsg

#===

Other Jumps

Version 1.3.7 Page 110 of 175

In addition to the Unconditional, Zero, Unsigned and Signed jumps, there are three other jumps that target
specific flags.

Jump if Carry (“JC”) executes a jump if the CARRY flag is set. Similarly Jump if No Carry (“JNC”) jumps if
the CARRY flag is not set.

Jump if Overflow (“JO”) executes a jump if the Overflow flag is set. Similarly Jump if No Overflow (“JNO”)
jumps if the Overflow flag is not set.

Jump if Sign (“JS”) executes a jump if the Sign flag is set. Similarly Jump if No Sign (“JNS”) jumps if the Sign
flag is not set.

Yet another jump instruction that can be very useful in implementing a loop with a specific number of
iterations is the Jump if RCX Zero (“JRCXZ”) instruction.

See sample below showing how the “JRCXZ” instruction can be used to implement a loop. Note that I have
used three new instructions in this sample – “PUSH”, “POP” and “DEC”.

The “PUSH” and “POP” instructions are mechanisms to save data on the stack. In the sample below, the
value of the “RCX” register could potentially be overwritten. Hence I saved its value on the stack with the
“PUSH” instruction and later restored it with the “POP” instruction.

The “PUSH” instruction effectively translates to the following sub instructions;

sub $8, %rsp
mov <quad data to be saved>, (%rsp)

First we decrement the stack pointer (note the stack grows to lower addresses), then we save the data in the
new location of the stack pointer. We will talk more about the indirect addressing mode (the parenthesis
around %rsp) later on.

The “POP” instruction is the inverse of the “PUSH”. The following sub instructions effectively sum up the
“POP instruction.

 mov (%rsp), <quad data to be retrieved>
 add %rsp, $8

The decrement (“DEC”) instruction simply subtracts 1 from the operand. Similarly the increment (“INC”)
instruction adds 1 to the operand.

Assembly Sample 7

#===

File: Sample7.s

Assemble: gcc -c Sample7.s

Link: ld Sample7.o -o Sample7

Run: ./Sample7

#===

.global _start

.text

_start:

 mov $10, %rcx

START_LOOP:

 jrcxz EXIT

 push %rcx

 mov $1, %rax

Version 1.3.7 Page 111 of 175

 mov $1, %rdi

 mov $loopMsg, %rsi

 mov $loopeMsgLen, %rdx

 syscall

 pop %rcx

 dec %rcx

 jmp START_LOOP

EXIT:

 #exit(0)

 mov $60, %rax

 xor %rdi, %rdi

 syscall

#===

.data

 CR = 13

 LF = 10

 loopMsg: .ascii "Looping..."

 .byte CR, LF

 loopeMsgLen = .-loopMsg

#===

Basic Loop
Our knowledge of the Jump if Not Zero (“JNZ”) and jump if Zero (“JZ”) instructions will allow us to implement
a very basic loop.

There are two loops in the sample below.

In the first loop I have replaced the “JCXZ” instruction with a JNZ. I am exploiting the fact that the “DEC”
instruction sets the ZERO flag.

The second loop introduces the “LOOP” instruction. The “LOOP” instruction decrements the CX register by
one and loops to the operand label if the CX register is not zero. Note that it does not alter the flags register.

Assembly Sample 8

#===

File: Sample8.s

Assemble: gcc -c Sample8.s

Link: ld Sample8.o -o Sample8

Run: ./Sample8

#===

.global _start

.text

_start:

 mov $10, %rcx

START_LOOP1:

 #This loop uses a "dec" and "jnz"

 push %rcx

 mov $1, %rax

Version 1.3.7 Page 112 of 175

 mov $1, %rdi

 mov $loop1Msg, %rsi

 mov $loop1MsgLen, %rdx

 syscall

 pop %rcx

 dec %rcx

 jnz START_LOOP1

 #We have come out of the first loop

 #Reinitialize %rcx

 mov $10, %rcx

START_LOOP2:

 #This loop replaces the "dec" and "jnz" with a "loop"

 push %rcx

 mov $1, %rax

 mov $1, %rdi

 mov $loop2Msg, %rsi

 mov $loop2MsgLen, %rdx

 syscall

 pop %rcx

 loop START_LOOP2

EXIT:

 #exit(0)

 mov $60, %rax

 xor %rdi, %rdi

 syscall

#===

.data

 CR = 13

 LF = 10

 loop1Msg: .ascii "Loop 1..."

 .byte CR, LF

 loop1MsgLen = .-loop1Msg

 loop2Msg: .ascii "Loop 2..."

 .byte CR, LF

 loop2MsgLen = .-loop2Msg

#===

Other Loops (LoopE, LoopZ, LoopNE, LoopNZ)
The Loop if Zero (“LOOPZ”) or Loop if Equal (“LOOPE”) instructions are similar to the “LOOP” instruction
with one additional condition – they only loop if the ZERO flag is set.

The Loop if Not Zero (“LOOPNZ”) or Loop if Not Equal (“LOOPNE”) instructions are also similar to the
“LOOP” instruction with the additional condition that they only loop if the ZERO flag is not set.

These instructions are handy in cases where the number of loops is not always a constant but rather based
on a condition.

Using the –fstack-protector-all option

The option forces the GCC compiler to emit extra code to check for stack overflows.

Version 1.3.7 Page 113 of 175

Here is an example code that was compiled with the “-fstack-protector” option…

Notice how a guard is added at 0x8(%rsp) at offset 0x13 and then checked at offset 0x45.

Version 1.3.7 Page 114 of 175

Week 6: Machine-Level Representation of Code –Part 2

Procedures

A procedure allows a developer to abstract the implementation details of some action by
allowing users of the function pass a set of parameters (if required) and get the procedure to
return a result (if required).

This allowance for procedure calls requires a system to allow the following:

1) Control Transfer: Passing control to a procedure and allowing the procedure to return
to the caller once the procedure completes execution.

2) Data Transfer: Passing data to a procedure.
3) Memory Allocation: Allocating and deallocating memory.

The memory stack associated with a thread of execution is instrumental is achieving all of the
requirements above.

Control Transfer

The following example illustrates a call to a Procedure from a Main function.

The Assembly instruction at address 0x 4005ac in the Main function is a “callq” instruction to
“myFunc”.

I have provided a snap shot of the stack memory immediately prior to and immediately after the
execution of the “callq” instruction. Notice how the return address is the last thing stored on the
stack before the instruction pointer moves to the function.

Note that we had earlier defined the operation of a “call” and “ret” as follows…

callq ➔ push RA and change %rip
retq ➔ pop %rip

In this illustration, you can see how this happens…

Version 1.3.7 Page 115 of 175

Version 1.3.7 Page 116 of 175

Data Transfer

In the x64 architecture, most of the data passed to procedures happens via registers and return
values are conventionally passed in the rax register.

Up to six integral (integer or pointer) arguments can be passed via registers. The registers are
used in a specified order.

Argument

Size

Arg 1 Arg 2 Arg 3 Arg 4 Arg 5 Arg 6

64 %rdi %rsi %rdx %rcx %r8 %r9

32 %edi %esi %edx %ecx %r8d %r9d

16 %di %si %dx %cx %r8w %r9w

8 %dil %sil %dl %cl %r8b %r9b

Version 1.3.7 Page 117 of 175

Memory Allocation

When a Procedure has more than 6 arguments, the remaining arguments are passed on the
stack. Some of the other circumstances when the stack has to be used to pass data to
procedures include cases where the address operator “&” is applied to a local variable. In this
case we need to be able to generate an address for it and that is not possible on a register
variable. Yet other cases involve arrays or structures. Allocation on the stack with respect to a
single call to a procedure are referred to as a stack frame.

Note that this ability to have a private copy of the procedure data on the stack for each call into
a procedure is what allows us the ability of recursion.

Version 1.3.7 Page 118 of 175

Version 1.3.7 Page 119 of 175

Version 1.3.7 Page 120 of 175

Heterogeneous Data Structures

The C programming language provides two mechanisms for creating new data types that are a
combination of the primitive data types. These are structures (keyword struct) and unions
(keyword union).

Structures

An example of a structure is defined below…

struct myStruct
{
 int var1;
 int var2;
 char var3;
 int var4;
};

Compile a C file with this structure and find out the size of this structure. Then recompile this
structure with the following pragma directive and explain why the sizes are different.

#pragma pack(1)

Many computers systems place restriction on the addresses that can be used to access certain
primitive types in memory. These data alignment restrictions are designed to increase the
efficiency of the hardware that fetches data from memory locations. In general address should
be multiples of the sizes of the data being fetched. These are also referred to as natural
boundaries. Some systems will not allow access of memory based on unnatural addresses. Intel
does not place this restriction, however Intel does encourage the use of natural boundary
addresses for efficiency.

As discussed in the labs and assignments, access to structure elements use the “.” or “->” syntax
in struct values and pointers respectively. In assembly, accessing individual elements involves
identifying the address of individual elements.

Unions

An example of a union is defined below…

union myUnion
{
 int var1;
 char var2;

Version 1.3.7 Page 121 of 175

};

In a union, all fields refer to the same memory, but the field type dictates how the memory is
treated. The total memory reserved will be the size of the largest member. A union is useful
when we know ahead of time that access to individual members will be mutually exclusive.

Common uses of Unions…

Access to individual bytes in a HW register (Note use of volatile with registers)

typedef union
{
 struct{
 unsigned char b1;
 unsigned char b2;
 unsigned char b3;
 unsigned char b4;
 }offsets;
 unsigned int int_reg;
}General_Register;

General_Register reg1;

reg1.int_reg = 0xFFFF0000;

In the debugger figure out where each of the bytes (reg1.offset.b1, reg1.offset.b2 etc.) are
stored.

Access to individual bits in a HW register

typedef union
{
 struct{
 unsigned char b0:1;

unsigned char b1:1;
 unsigned char b2:1;
 unsigned char b3:1;
 unsigned char b4:1;
 unsigned char b5:1;
 unsigned char b6:1;
 unsigned char b7:1;
 }bits;
 unsigned char byte_reg;
}General_Register;

General_Register reg1;

reg1.byte_reg = 0xFF;

Version 1.3.7 Page 122 of 175

In the debugger figure out where each of the bytes (reg1.bits.b1, reg1.bits.b2 etc.) are stored.

Converting between binary representation of integers and floats

typedef union
{
 int int_var;
 float float_var;
}FloatBits;

Mid-term

Version 1.3.7 Page 123 of 175

Week 7: Machine-Level Representation of Code –Part 3

Combining Control and Data in Machine-Level Programs

Understanding pointers

• Every pointer has an associated type

• Every pointer has a value (NULL is a special value)

• Pointers are created with the ‘&’ operator applied to an lvalue (left side of
assignment)

• Pointers are dereferenced with the ‘*’ operator

• Array and pointers are closely related

• Casting from one type of pointer to another changes its type but not its value

• Pointers can also point to functions (value is the address of first instruction)

int fun(int x, int *p);

int (*fp)(int, int *);
fp = fun;

int y = 1;
int result = fp(3, &y);

Using the GDB debugger

Using GDB allows the possibility of studying the behavior of a program by watching the
program in action while having considerable control over its execution.

GDB commands (from Fig 3.39 of text)

Command Effect

Starting and stopping

quit Exit GDB

run Run your program

kill Stop your program

Version 1.3.7 Page 124 of 175

Breakpoints

break multstore Set breakpoint at entry to function multstore

break *0x400540 Set breakpoint at address 0x400540

delete 1 Delete breakpoint 1

delete Delete all breakpoints

Execution

stepi Execute one instruction

step4 Execute four instructions

nexti Like stepi, but proceed through function calls

continue Resume execution

finish Run until current function returns

Examining code

disas Disassemble current function

disas multstore Disassemble function multstore

disas 0x400544 Disassemble function around address 0x400544

disas 0x400540, 0x40054d Disassemble code within specified address range

Print /x $rip Print program counter in hex

Examining data

print $rax Print contents of %rax in decimal

print /x $rax Print contents of %rax in hex

print /t $rax Print contents of %rax in binary

print 0x100 Print decimal representation of 0x100

print /x 555 Print hex representation of 555

print /x ($rsp+8) Print contents of %rsp plus 8 in hex

print *(long*)0x1234 Print long integer at address 0x1234

print *(long*) ($rsp+8) Print long integer at address %rsp+8

x /2g 0x1234 Examine two (8 byte) words starting at address 0x1234

x /20b multstore Examine first 20 bytes of function multstore

layout asm To view and step through disassembly

si Short for stepi

Useful information

info frame Information about current stack frame

Info registers Values of all the registers

Help Get information about GDB

Version 1.3.7 Page 125 of 175

Thwarting Buffer Overflow Attacks

Worms & Viruses

Both worms and viruses are pieces of software that attempt to continually spread across a

network attacking each system along its path.

A worm differs from a virus in that a worm is a program that is self-contained and can

run on its own.

A virus on the other hand needs to trick a host process to run its code.

What does the Linux memory map look like?

Version 1.3.7 Page 126 of 175

What is a Buffer overflow Attack?

Let’s take a very simple C program that looks like this…

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>

bool CheckPassword(char* password)
{
 bool retVal = false;
 char buffer[5];

 strcpy(buffer, password);

 if(!strcmp(buffer, "pass"))
 {
 retVal = true;
 }

 return(retVal);
}

int main(int argc, char* argv[])
{
 bool validPassword;

 validPassword = CheckPassword(argv[1]);

 if(validPassword)
 {
 printf("Password valid... you have access!\n");
 }
 else
 {
 printf("Password invalid... exiting!\n");
 }

 return(0);
}

Compile this program using the following command line…

gcc test.c -fno-stack-protector

Now run it to confirm it works as expected…

Version 1.3.7 Page 127 of 175

Load it in gdb and walk the disassembly using the following commands…

gdb ./a.out
b main
layout asm

Now run it in the debugger using the following command…

Here we are using python to generate our “argv[1]”. The “argv[1]” is a bunch of NoPs,
following by the HEX chars, 0x23, 0x06 and 0x40. If we transpose it from the little endian
representation, it is actually 0x400623.

Now let’s look at the disassembly to see where that shows up in the code… Turns out
that maps to the place where we recognize the password is valid.

As shown below, we end up overwriting the return address with an address of our
choice, that in this case that bypasses the check for the password.

Note that you will get up with an AV in this case when the main program exits because
you over-wrote %rbp in the process, but you are likely to have succeeded in penetrating
the system before that happens.

Version 1.3.7 Page 128 of 175

Version 1.3.7 Page 129 of 175

Now you can try this exploit without the gdb as follows…

Stack Randomization

Note that we had to have intimate knowledge of the stack to build the above exploit. We

needed to know where the return address was located relative to our local buffer among

other things.

One technique to reduce the likelihood of such attacks is to avoid being consistent with

the location of the stack.

By randomizing the location of the stack, you make it harder for an exploit to make

guesses about the stack.

You can use a program like the one below to study if your OS is employing stack

randomization.

Version 1.3.7 Page 130 of 175

 #include <stdio.h>

int main(int argc, char* argv[])
{
 int local;

 printf(“Local variable at %p\n”, &local);

 return(0);
}

Stack Corruption Detection

Another protection against Buffer overflow attacks is the use of the “Stack Smashing

Protection” provided by the GCC compiler. This allows your code to inject guards around

your Stack frames which are checked before the function exits. Starting with GCC 4.8.3,

this option is on by default. To turn it off you need to use the “-fno-stack-protector”

option.

Limiting Executable Code Regions

An extension of our exploit above may be to add real code on the stack instead of the

NoPs. Then we could have changed the return address to somewhere in the buffer itself

and executed the code we introduced.

One option to guard against that is to limit execution of code to a limited range of

memory addresses.

Supporting Variable-size Stack frames

Below is an example of code that uses variable-size stack frames (Fig 3.43 from text)…

long vframe(long n, long idx, long *q)
{
 long i;
 long *p[n];
 p[0] = &i;
 for(i = 1; I < n: i++)
 p[i] = q;
 return *p[idx];
}

Version 1.3.7 Page 131 of 175

Local variables can’t be allocated on stack during compile time for the above function. In
this case rbp saves the location of the base stack pointer and rsp is moved based on
local space required. Finally the leave instruction is used to restore rbp and rsp.

leaveq ➔ rsp = rbp; pop %rbp

Floating-Point Code

The support for image processing has driven both Intel and AMD to incorporate

successive generations of media instructions. The original implementation of these media

instruction focused on a single instruction performing an operation on multiple data in

parallel (SIMD - Single Instruction Multiple Data – Sim Dee). Subsequent revision have

improved on this and have been referred to by different technology names such as Multi-

Media Extension (MMX), Steaming SIMD Extension (SSE), and most recently the

Advanced Vector Extension (AVX).

Floating point Evolution

Historical evolution of floating point Architecture in Intel x86…

• SIMD (Single Instruction Multiple Data – Sim-dee)

• MMX (Multi-Media Extension)

• SSE (Streaming SIMD Extension)

• AVX (Advanced vector extensions)

• AVX2 (Version 2 AVX)

Floating point Registers

Each generation of floating point evolution, uses registers referred to as “MM” registers

(for MMX).

Register for each of these technologies are…

• MM – MMX (64 bits – 8 bytes)

• XMM – SSE (128 bits -16 bytes)

• YMM – AVX (256 bits – 32 bytes)

Version 1.3.7 Page 132 of 175

For info available here… https://en.wikipedia.org/wiki/AVX-512

https://en.wikipedia.org/wiki/AVX-512

Version 1.3.7 Page 133 of 175

Floating point Instructions

X = XMM register

R32 = 32-bit general purpose register

R64 = 64-bit general purpose register

M32 = 32-bit Memory range

M64 = 64-bit Memory range

• Figure 3.46 provides floating point move operations

Instruction Source Destination Description

vmovss M32 X Move Single precision

vmovss X M32 Move Single precision

vmovsd M64 X Move Double precision

vmovsd X M64 Move Double precision

vmovaps X X Move aligned, packed single precision

vmovapd X X Move aligned, packed double precision

• Figure 3.47 provides floating point conversion operations to integer

Instruction Source Destination Description

vcvttss2si X/M32 R32 Convert with truncation single precision to integer

vcvttsd2si X/M64 R32 Convert with truncation double precision to integer

vcvttss2siq X/M32 R64 Convert with truncation single precision to quad word
integer

vcvttsd2siq X/M32 R64 Convert with truncation single precision to quad word
integer

• Figure 3.48 provides floating point conversion operations from integer (ignore 2nd
argument for our purpose).

Instruction Source 1 Source 2 Dest Description

vcvtsi2ss M32/R32 X X Convert integer to single precision

vcvtsi2sd M32/R32 X X Convert integer to double precison

vcvtsi2ssq M64/R64 X X Convert quad word integer to single precision

vcvtsi2sdq M64/R64 X X Convert quad word integer to double precision

• Figure 3.49 provides scalar floating-point arithmetic operations

Single Double Effect Description

vaddss vaddsd D<-S2 +S1 Floating point add

vsubss vsubsd D<-S2 – S1 Floating point subtract

vmulss vmulsd D<-S2 * S1 Floating point multiply

vdivss vdivsd D<- S2 / S1 Floating point divide

vmaxss vmaxsd D<-max(S2, S1) Floating point maximum

vminss vminss D<-min(S2, S1) Floating point minimum

sqrtss sqrtsd D<- sqrt(S1) Floating point square root

Version 1.3.7 Page 134 of 175

• Section 3.11.6 provides floating-point comparison operations (Sets ZF, CF and PF flags)

Instruction Based on Description

ucomiss S1, S2 S2 – S1 Compare single precision

ucomisd S1, S2 S2 – S1 Compare double precision

Floating point function arguments

• Floating point arguments are passed in XMM registers (up to 8 in %xmm0 to
%xmm7)

• Floating point returns are returned in %xmm0.

• All XMM registers are caller saved. Callee may overwrite any.

• When a function requires a combination of pointer, integer and floating point
arguments, the pointer and integer values are passed in general purpose
registers, while the floating-point values are passed in XMM registers.

Floating point constants

• AVX floating point operations do not support immediate addressing

• Instead compiler must allocate and initialize storage for any constant values

Floating Point Example code

To generate AVX2 code use –mavx2 in GCC command line.

The following is some example floating point code generated using the “-mavx2” cmd line
argument…

gcc -g -mavx2 float1.c

Version 1.3.7 Page 135 of 175

Our constant float values are stored in the Code segment…

The string argument to printf is passed in %edi.

Version 1.3.7 Page 136 of 175

Week 8: The Memory Hierarchy – Part 1

So far we have assumed a computer system as a CPU that executes instructions and a

memory system that holds instructions and data for the CPU as a linear array of bytes.

This however does not reflect reality since it ignores the optimizations possible if

frequently used memory is accessible faster than accessing memory. We are aware that

the registers in the CPU allow faster access than memory, but they are limited in size.

Storage Technologies

Random Access Memory

There are two types of RAMs – Static RAM (SRAM) and Dynamic RAM (DRAM).

Each cell of SRAM is implemented with a 6 transistor circuit and the circuit allows the

indefinite stay in either of 2 different voltage states.

Each cell of DRAM is implemented as a very small capacitor (30 x 10-15) farad. Leakages

force a DRAM to require periodic refresh every few milliseconds.

DRAM access time is of the order of 20ns while SRAM access time is of the order of

2ns.

Fig 6.2 shows the comparison b/t DRAM and SRAM.

 Cost Access time Sensitivity

SRAM 1000x costlier 10x faster Persistent and stable

DRAM 1x 1x Not Persistent

DRAM Details:

DRAM chips are configured as supercells where each supercell can store up to “w” bits

of information. The supercells themselves are configured in a matrix where each

supercell is identified by a “row” and “column”. A memory controller will translate a

memory address into the appropriate “row” and “column” information and pass it over

the “address lines” to the DRAM chip and the data will be passed back over the “data

lines”. See figure 6.3 in the text. A RAS (row address strobe) and a CAS (column address

strobe) are used to indicate the validity of the Row and Column addresses respectively.

Version 1.3.7 Page 137 of 175

R

o

w

A

d

d

r

e

s

s

D

E

M

U

X

Output of Sense Amplifier gets latched

 Column Data Selector DEMUX

Tri State Bus

Output gets latched CAS

RAS

Version 1.3.7 Page 138 of 175

Read Operation sequence:

1) The bit-lines are pre-charged to a set voltage that is between the active high and

active low voltages (Note: Bit lines are connected to alternate rows).

2) The RAS will select the DRAM row causing the Capacitor to discharge

(Destructive READ) and drive the bit-line in the direction of the state of the

capacitor.

3) The sense amplifiers allow the detection of the change, thus detecting the state of

the capacitor. This is latched for the entire row.

4) A column address then selects the actual bit corresponding to the address.

During a Write operation, the row is opened and the required column’s sense amplifier is

forced to the desired state thus causing the corresponding bit-line to charge the capacitor

to the corresponding state. For the other columns on that row, the cells are refreshed by

the feedback from the sense amplifiers.

Refresh cycles on DRAMs are in the order of 60ms or less.

DRAM chips are designed to fit into a dual inline memory module (DIMM) connector.

See figure 6.5 for how a DRAM package can support access to 64-bits of data with a

single row/column address combination.

Version 1.3.7 Page 139 of 175

Understanding the timing diagrams for READ and WRITE cycles will give greater

insight into how RAM is accessed in Hardware.

Below is a simplified READ cycle from and IBM DRAM application note:

• The Active Low RAS (Row Access Select/Strobe) line goes low once the Row

data is populated on the address lines.

• tRAS is the minimum amount of time that RAS has to active and tRP is the

minimum amount of time the RAS has to be inactive.

• The Active Low CAS (Column Address Select/Strobe) line goes low when the

column address is valid on the address lines.

• tCAS is the minimum amount of time that CAS must be active and tCRP is the

minimum amount of time must be inactive.

• WE and OE are the control lines that control “Write Enable” (choose b/t reading

and writing) and “Output Enable” (used in READ to control when Data appears

during a READ. Not used for write).

Version 1.3.7 Page 140 of 175

A similar timing diagram for a WRITE operation is given below:

Version 1.3.7 Page 141 of 175

SRAM Details:

An SRAM cell uses substantially more transistors (6 transistors) than a DRAM, however

the value of the cell is stable and does not require refreshes.

Reading of an SRAM cell involves precharging the bit-lines to a fixed voltage and then

opening the word line (WL) and sensing the differential voltage (much like the DRAM).

Writing to an SRAM involves setting the bit-lines to the value to be written and opening

the Word lines.

Both DRAMs and SRAMs are volatile, meaning they lose data if the power is lost.

Nonvolatile memory on the other hand retains the data even when power is turned off.

Nonvolatile memory is often referred to as ROMs (Read Only Memory). The ROMs are

often programmable multiple times, though the name implies otherwise (eg. PROM,

EPROM).

Disks Storage

While DRAM and SRAM store thousands of megabytes, Disks are capable of storing

thousands of gigabytes. However access time for Disks are in the order of milliseconds –

almost a million times slower than SRAM.

Disks are made of platters with 2 sides coated with magnetic recording material. A

rotating spindle in the center of the platter spins the platter at a fixed speed (approx. 4,200

Version 1.3.7 Page 142 of 175

to 15,000 RPM). A Disk is made of multiple platters encased in a sealed unit. The

geometry of a Disk is described in terms of cylinders, where a cylinder is the collection

of tracks on all surfaces that are equidistant from the center of the spindle and where

tracks are broken into Sectors. In the early days, every track was designed to have the

same number of sectors. To accomplish this, the gaps between tracks were larger in outer

tracks. To avoid the consequence of lost space, newer technologies break the radial

regions into zones and within a given zone, there are the same number of sectors per

track.

The capacity of a Disk is determined by 3 factors:

Recording Density: Number of bits per inch of a track

Track Density: Number of tracks per inch of radius

Areal Density: Product of Recording Density and Track Density

Capacity = (bytes/sector) X (average number of sectors/track) X (tracks / surface)

X (surfaces/platter) X (platters/disk)

Disk read and write happens by using a “head” connected to the end of an actuator arm

and each surface has a dedicated “head”. At any point in time, all heads are positioned on

the same cylinder. The head flies over a thin cushion of air (0.1 microns) at a speed of

about 80 km/h. Because of the limited distance between the head and the track, a tiny

particle of dust could seize the head. To avoid this, disks are packaged in air tight

packages.

Disks read and write data in sector size blocks. The access time for a sector is impacted

by the following 3 factors:

Seek time: Time required to position the arm over a track (3 to 9ms)

Rotational latency: Rotational speed

Transfer time: Time to read or write a sector

Seek time and Rotational latency are usually about the same, and transfer time is

negligible. Thus doubling seek time is a good rule of thumb to get that total latency to

read a sector.

Comparison with RAM…

SRAM: About 256ns for 512 bytes

DRAM: About 4000ns for 512 byes

DISK: About 10ms for 512 bytes (x4000 relative to SRAM and x 2500 relative to

DRAM)

To abstract the details of sectors, tracks and cylinders from the operating system, modern

Disk controllers offer a “logical block” view of the Disk. The Disk controller translates a

logical block to a physical cylinder.

Version 1.3.7 Page 143 of 175

Fig 6:12 (page 634) shows the sequence of events during Disk I/O.

1) CPU writes a READ/WRITE cmd with logical block number and src/dest

memory address.

2) Disk controller performs DMA

3) Disk controller interrupt CPU with notification of completion.

Solid State Disks

A Solid State Disk (SSD) is based on flash memory. Flash memory is a type of

Electronically Erasable Programmable Read Only Memory (EEPROM).

SSDs are a popular alternative to Disks especially when movement resilience is essential

such as in laptops.

Flash memory consists of a sequence of blocks where each block consists of a number of

pages. Typically pages are about 512 bytes to 4KB in size and a block consists of 32 to

128 pages. Data is read and written in units of pages. A page can be written only after the

entire block is erased. Once a block is erased, each page in that block can be written once.

A block wears out after about 100,000 repeated writes.

SSD advantages:

1) No moving parts

2) Less power

3) More rugged

SSD Disadvantages:

1) Flash wear – lower lifespan (wear leveling mitigates)

2) About 2x more expensive than Disk

Locality

In general, programs with good locality run faster than programs with poor locality.

There are 2 types of locality:

1) Temporal locality: A memory location accessed once is likely to be accessed

again.

2) Spatial locality: Memory location near a previously accessed memory location is

more likely to be accessed.

Version 1.3.7 Page 144 of 175

Hardware design provides greater efficiency when locality is honored in software design.

Locality applies to both data and instructions. Enumerating over an array and executing

code in sequence, both lend themselves to leveraging hardware locality efficiency. A

jump instruction generally can break the sequence of code execution, but a loop can

provide good locality especially with smaller loop bodies.

The Memory Hierarchy

As observed previously, memory technologies get slower, cheaper and larger (in

capacity) as we move from RAM to Disks. Registers in the CPU are even faster than

RAM. The memory hierarchy refers to the organization of memory in a computer that

leverages this difference in speed, cost and capacity of the different memory

technologies.

It is often advantageous to store commonly used instructions and data from slower

memory devices in faster memory devices as a staging area. This technique is referred to

as “Caching”.

In a general sense, instructions and data at level k in the memory hierarchy serve as a

cache for instructions and data at level k+1. The following are the common levels in the

Memory Hierarchy:

L0: Registers

L1: L1 Cache

L2: L2 Cache

L3: L3 Cache

L4: Main Memory

L5: Local Disk

L6: Remote Disk

The storage at k+1 is partitioned into contiguous chucks called blocks. Each block has a

unique address. Cache blocks at level K have the same block size as level K+1, but have

a substantially lesser number of blocks. Data is always copied back and forth in fixed

block sizes.

When a program needs an instruction or data from memory at level K+1, it will first look

for it in memory at level K. If it finds it at level K, we refer to that as a “Cache hit”. If it

is not available at level K, we refer to it as a “Cache miss”. There are different reasons for

cache misses. Some of the common ones are “cold miss” (cache not populated), “conflict

miss” (required blocks don’t match cached blocks) and “capacity miss” (not adequate

capacity for all required blocks)

Version 1.3.7 Page 145 of 175

Compilers dictate L0 cache management. Hardware manages L1, L2 and L3 caches. In

VM systems DRAM serves as a cache for the Disk.

The image below shows the general layout of the L1, L2 and L3 caches. Note that L3

cache is usually common across cores.

Cache Memories

Early computers only had 3 memory levels – CPU Registers, main memory and Disk

storage. As the CPU got faster, the performance gap between the CPU and memory

access grew bigger. To alleviate this situation, designers introduced an L1 cache. Later

L2 and L3 caches were introduced. CPU registers are generally accessible in 1 clock

cycle, while L1 generally requires 4 clock cycles, L2 generally requires 10 clock cycles

and L3 generally requires 50 clock cycles.

CPU

Core 1

L1-I L1-D

L2

CPU

Core 2

L1-I L1-D

L2

CPU

Core n

L1-I L1-D

L2

L3 Cache

Main Memory

Version 1.3.7 Page 146 of 175

Caches are organized in sets where each set has a number of lines (uniquely identified by

a tag) and each line holds a block. The address to the caches is defined by a tag (t bits), a

set Index (s bits) and a block offset (b bits)

E = Number of lines per set

s = Number of sets index bits - (log2(S)) Where S is the number of sets

b = Number of block offset bits – (log2(B)) Where B is the number of bytes per block

t = m – (s+b) – Number of tag bits where m is the number of address line bits

C = B x E x S – Cache Capacity

Given a number of bits “m” used for an address, we can evaluate how many of those bits

will be required to define the set index based on the number of sets. Similarly we can tell

how many address bits are required to define the block offset based on the number of

bytes in the block. The remaining bits in the address end up being the Tag bits.

Notice that we use the more significant bits in the address as the Tag bits and the middle

bits for the set index. This is to ensure that contiguous memory has a better chance of

being available in the cache simultaneously. Contiguous memory is likely going to have

the same higher bits, but different middle bits. By using the middle bits for the set index,

we allow contiguous memory to reside in different sets within the same cache. Note that a

program that exploits spatial locality is going to access contiguous memory more often.

Version 1.3.7 Page 147 of 175

In a Cache defined as (S, E, B, m) = (4, 1, 2, 4)…

s = log2(4) = 2

b = log2(2) = 1

t = m – (s+b) = 4-(2+1) = 1

So out of the 4 address bits, 1 bit will define the tag, 2 bits will define the set, and 1bit

will define the block offset. Since there is only 1 bit for block offset, we can only have 2

bytes in the block.

Tag Bits Set Index

Bits
Block Offset

0
m-1

Valid Tag 0 1 … B-1

Valid Tag 0 1 … B-1

.

.

.

Valid Tag 0 1 … B-1

Valid Tag 0 1 … B-1

.

.

.

Valid Tag 0 1 … B-1

Valid Tag 0 1 … B-1

.

.

.

.

.

.

Set 0

Set 1

Set S-1

Version 1.3.7 Page 148 of 175

Direct-Mapped Caches

Direct-mapped Caches refer to caches where “E” (Number of lines per set) is 1. Conflict

misses in direct-mapped caches typically occur when programs access arrays whose sizes

are a power of 2. See example in page 658.

Given a memory address, the breakdown of the address lines into “tag”, “set” and

“block” are as follows:

Tag Set Block Index

The number of bits for each is given by:

s = Number of sets index bits - (log2(S)) Where S is the number of sets

b = Number of block offset bits – (log2(B)) Where B is the number of bytes per block

t = m – (s+b) – Number of tag bits where “m” is the number of address line bits

It is may seem odd that the high bits are not used as a Set index. The reason for this is

that if high bits are used for a set index, they are likely to cause more cache misses when

accessing adjacent memory locations especially in the case of Direct-Mapped Caches.

See Fig 6.31 in page 659.

Set Associative Caches

Set Associative Caches refers to caches where “E” (Number of lines per set) is 1 < E <

C/B. Selection of a set works the same way as a Direct-Mapped Cache in this type of

Cache, but matching the line within a set requires searching for a line with a matching

tag. See figure 6.33 on page 661. Similarly line replacement is different with Set

Associative Caches, since you have to choose which line you are going to replace.

Different algorithms exist for this including, random, least frequently used and least

recently used.

Fully Associated Caches

Fully Associated Caches refer to caches with a single set where E=C/B. Since there is

only one set in this case, set selection is not required. The tag is used to determine the

line, while line replacement is similar to the Set Associative Cache.

Cache Associativity summarized

1-way Set Associative (Direct Mapped) – 1 line per set

2-way Set Associative – 2 lines per set

4-way Set Associative – 4 lines per set

Version 1.3.7 Page 149 of 175

Fully Associative – Only 1 set. Cache match based on tag only.

Note: The higher the associativity, the easier the block placement, but harder the search.

Issues with Write

While we have covered Cache hits and misses in the previous sections related to READs,

writing a cache value has an additional challenge - We not only need to update the cache

memory, but we need to update the next lower level in the hierarchy as well. One option

would be to update the next lower level every time a WRITE occurs. This can however

substantially increase bus traffic. A better option would be update the next lower level in

the hierarchy only when a cache line is being replaced. This would however require an

additional “Dirty-bit”, to indicate if a cache bit has been modified.

A write-miss has two common solutions - You can either allocate the corresponding

block in the cache and then update the cache (write-allocate) or you can directly update

the next lower level to the cache (no-write-allocate).

Anatomy of a Real Cache Hierarchy

Caches are used for both instructions and data. Caches for instructions are called “i-

cache” while those for data are called “d-cache”. Modern processors include separate i-

caches and d-caches. I-Caches are read-only are thus simpler than d-Caches. A cache

may include both instructions and data, in which case they are referred to as unified

caches. See figure 6.38 on page 668.

Performance impact of Cache Parameters

Cache performance is evaluated by a number of metric:

Miss rate: #misses / #references

Hit rate: 1- miss rate

Hit time: Time to deliver a word in cache to the CPU

Miss penalty: Additional time required in the event of a cache miss

Variable that impact Cache performance:

Cache Size: Larger caches increases hit rate.

Block Size: Larger block size helps in cases of spatial locality but hurts in

temporal locality because for a given cache size larger block size reduces the

number of cache lines.

Version 1.3.7 Page 150 of 175

Associativity: Higher associativity means more cache lines per set. This means

less thrashing of the cache, but increases hit time because of the line matching

complexity.

Write strategy: Write-through is simpler to implement, but can lead to

substantial I/O traffic.

Version 1.3.7 Page 151 of 175

Week 9: The Memory Hierarchy – Part 2

Writing Cache-Friendly Code

1. Make the common case go fast: If you were to use a perf tool to find out where

your program is executing code most of the time, you will likely find that during a

substantial percentage of the time your Instruction Pointer (IP) is located in a

limited set of functions. These perf tools generally work by setting up a timer

interrupt and identify the location of the IP every time the Timer interrupt fires.

Optimizing the code associated with these functions is likely to payoff bigger

dividends than focusing on the less used code.

2. Minimize the number of cache misses in each inner loop: Assuming all the

number of loads, stores and such being equal, reducing the number of cache

misses in loops will have greater impact on performance.

Let’s look at the following example (from section 6.5 of the text):

int sumvec (int v[N])

{

 int i, sum = 0;

 for(i=0; i < N; i++)

 {

 sum += v[i];

 }

 return sum;

}

Is this function cache friendly?

Notice we have good temporal locality w.r.t “i” and “sum”.

When we talk about spatial locality, we use the term “stride” to refer to how big

the jumps are in the access of memory. A stride-k reference (k in words) results in

an average of min(1, (word size * k)/B). Note that “k” of “1” is going to give the

best results. In the above example we have a “stride-1”reference to “v”, so we

have good spatial locality.

Spatial locality is particularly important in programs that operate on multi-

dimensional arrays. Let’s look at the following example:

Version 1.3.7 Page 152 of 175

int sumarrayrows(int a[M][N])

{

 int i, j, sum = 0;

 for (i=0; i<M; i++)

 for(j=0; j < N; j++)

 sum += a[i][j];

 return sum;

}

Since the C language stores arrays in row-major order, the inner loop of this

function has a stride-1 access pattern. However if you were to swap the two for

loops, we could have a substantially higher miss rate if our cache block size can’t

accommodate the entire array. In the worst case, every access will lead to a cache

miss.

Impact of Caches on Program Performance

The rate at which a program reads data from memory is called the “Read throughput”.

Read throughput is measured in MB/s.

In Fig 6.40 of the text there is a program that calculates the “Read throughput” as a

function of the stride and size.

A smaller value of size will result in a smaller working set of data and thus lead to greater

temporal locality.

Similarly a smaller value of stride will result in greater spatial locality.

The resultant 3 dimensional map of the Read throughput is shown in Fig 6.41 of the

text.…

Notice how as the size increases, you see ridges forming that reflect the sizes of the L1,

L2, and L3 caches.

Similarly, notice the slopes associated with the increase in strides. As the strides increase,

we see an decrease in throughput.

One interesting observation is that for a stride of “1”, we don’t see a deterioration of the

Read throughput with an increase in size (see 12,000 MB/s flat ridge line). This is due to

hardware optimization that allows for prefetching in Core i7 for a stride-1 access.

Version 1.3.7 Page 153 of 175

Example problems

Problem 1

The following table is used for questions 1, 2, 3, 4 and 5.

The following table shows the content of a (2, 4, 4, 15) memory cache, meaning that

the cache contains 2 sets, each set has 4 lines, each line contains 4 bytes and physical

addresses are 15 bits long

Set Valid Tag Blocks

0 1 0x081 DB 90 D7 A5

0 1 0x4AC 5A 1E A5 E4

0 1 0x208 D4 4B 51 95

0 0 0x08A 5C 5D 88 04

1 1 0x4AC 5B DE 5F 01

1 1 0x001 6F 23 48 99

1 0 0x08A A4 B3 C1 00

1 1 0x126 00 14 B4 8C

1. For the (2, 4, 4, 15) memory cache described above, how many bits of the physical

address identify the block within a cache line?

• There are 4 possible bytes in one line. Hence you need 2 bits to identify a

Byte within a Block.

2. For the (2, 4, 4, 15) memory cache described above, how many bits of the physical

address identify the cache set?

• There are 2 cache sets. Hence you need 1 bit to identify the Set.

3. How many bytes of physically addressable memory are there in the (2, 4, 4, 15)

memory cache described above?

• There are a total of 32 bytes of physically addressable memory.

4. Is the contents of physical address 0x000E in the cache? If so what is the value stored

at that address?

Version 1.3.7 Page 154 of 175

• 0x000E = 0000 0000 0000 1110

• Since the 2 LSbs represent the Byte offset, the Byte offset is 2

• Since the 3rd bit represents the Set, the Set is 1

• Since the remaining bits represent the Tag, the Tag is 1

• Looking at the Cache at Set “1”, Tag “1” and Byte offset “2” we see the value

is 0x48 and it is valid.

5. Is the contents of physical address 0x0453 in the cache? If so what is the value stored

at that address?

• 0x0453 = 0000 0100 0101 0011

• Byte offset = 3

• Set = 0

• Tag = 1000 1010 = 0x8A

• Value = 0x04 (but it is not a valid line)

Version 1.3.7 Page 155 of 175

Week 10: Virtual Memory

Memory is among the most important components in the architecture of a computer
system – second only to the CPU perhaps. When a computer system is out of memory,
the process is out of luck! When memory is corrupted, a process fails in the most
bewildering fashion totally unrelated to the logic of the program!

Before we discuss VM, let use think about the limitations of using Physical memory.
Here are some of the obvious problems:

1) You are limited by the size of the memory available in the system
2) Every time you load a process, your load address will vary
3) Memory will be used every time you reserve it
4) You don’t have a general way to provide certain memory areas with certain

protections

Virtual Memory (VM) refers to an elegant interaction of hardware exceptions, hardware
address translation, main memory, disk files and kernel software that provides each
process with a large, uniform and private address space. VM offers three important
capabilities:

1) Treats main memory as a cache for an address space stored on disk
2) Provides an uniform address space for each process
3) Protects that address space for each process

Why do we need to understand the inner workings of the VM?

1) VM is central – Understanding VM allows you to better appreciate computer
architecture

2) VM is powerful – Understanding VM allows you to harness its powerful
capabilities.

3) VM is dangerous – Understanding VM allows you to avoid memory errors

Physical and Virtual Addressing

Memory installed in computer system is byte addressable using “physical addresses”.
Until a CPU turns on the Memory Management Unit (MMU), physical addresses are
indeed the way the CPU accesses the memory. But once the MMU is turned on, the
MMU will intercept a “virtual address” and translate that to a physical address before
accessing the memory.

Version 1.3.7 Page 156 of 175

VM as a Tool for Caching

Conceptually VM is organized as an array of N contiguous byte size location on disk.
Each byte has a unique Virtual Address. As with any other cache, the data on disk is
partitioned into blocks that serve as the transfer units between the disk and the main
memory. There are 2 distinct characteristics associated with viewing physical memory as
a cache of a virtual memory file:

1) The cache is fully associative (only tags used to identify cache line)
2) Cache is not accessed directly – it is accessed through an intermediary mapping

table (page table)

VM partitions the virtual memory space into fixed size blocks called VM pages. Similarly
it partitions the physical memory into physical pages of the same size.
The VM pages at any given time may be in 3 possible states:

1) Unallocated – VM address not in use
2) Cached – VM address in use and data available in memory
3) Uncached – VM address in use and data available in disk only

To distinguish between the cache at L1, L2 and L3 from DRAM, we will refer to L1, L2
and L3 as SRAM cache, while we will refer to regular memory as DRAM cache.

The cost of DRAM cache miss is very expensive, since the cost of retrieving memory
form Disk is substantially higher. This cost influences the heuristics associated with
cache misses. DRAM caches are fully associative (only 1 set – only tag used to find
cache) – any VM page can replace any PM page. Also, writes are always “write-back”
instead of “write-through”.

Page Tables

Fundamental to Disk backed Virtual memory is a “Page Table”. This table is maintained
by the OS in DRAM and contains an entry for each VM page. The entry will specify one
of 3 possibilities for a VM page – page in DRAM, page in DISK, page is not allocated. If
the page is in DRAM, the valid bit will be set and the (Page Table Entry) PTE will point to
the PM page. If the page is in Disk the valid bit will be “0” and PTE will point to the Disk
address. If the VM is not allocated, the valid bit will be “0” and the PTE will be NULL.

Page Hits

While the OS is responsible for maintaining the page table, the MMU is responsible for
reading this table and translating a VA to a PA. When the PTE for a VA has the valid bit

Version 1.3.7 Page 157 of 175

set, the MMU will translate the VA to PA by offsetting into the Physical page (obtained
by the PTE) by the same amount as the VA is offset in the Virtual page.

Page Faults

A DRAM cache miss is referred to as a “Page fault”. The Address translation hardware
will generate a page fault exception when the valid bit is not set. The exception handler
in the Kernel is responsible for fetching the data from the Disk and finding an empty
Physical Page (or replace an existing Physical Page – also known as the victim page) and
updates the Page table accordingly. Once the exception handler returns, the same
faulting instruction is re-executed and this time there will be a page-hit. Note that if an
existing physical page is being replaced, the page fault handler is responsible for flushing
the updated contents to Disk.

Allocating Pages

Note that physical pages are not “committed” until they are really required. For
example if you do a “malloc” to allocate some virtual memory, you are often only
adding an entry in the Page table which points to a VM page on Disk. Only when you
access this memory does the VM system allocate the corresponding PM page.

VM as a Tool for Uniform Address Space

So far we assumed the system had a single page table. In reality most Operating Systems
provide a page table for each process in the system and any PTE in each of the page
tables can point to the same physical page. This way multiple processes can share the
same physical pages. An example of this is the use of dynamic linked libraries where the
code segment from DLLs can be shared by different processes. This scheme provides for
the following advantages:

1) Simplifying linking – Separate address space allows each process to use the
same basic format for its memory image. In Linux, code segment always starts at
VA 0x400000, data segment follows that at the next alignment gap, the stack
occupies the highest portion of the user address space and grows downward.

2) Simplifying loading – The loader can allocate PTEs and point them to Disk and
get the Page fault exception handler to do the loading.

3) Simplifying sharing – In cases when data should not be shared, PTE can point to
disjoint physical pages and in cases where sharing is required the point to the
same entries.

4) Simplifying allocation – No need for contiguous physical memory.

Version 1.3.7 Page 158 of 175

VM as a Tool for Memory Protection

PTEs lend themselves to page protection with the use of additional flags. Eg. Adding the
“SUPERVISORY”, “READ”, “WRITE” flags to each PTE can provide an easy way to restrict
access to individual pages.

Address Translation

Page Hit case:

1) The processor generates a virtual address (VA) and sends it to the MMU
2) The MMU uses part of the VA (that represents the Virtual Page Number - VPN)

to generate the PTE (Page Table Entry) index into the table pointed to by the
page table base register (PTBR –physical address) in the CPU and requests the
corresponding PTE from the cache or memory.

3) The cache/main memory returns the corresponding PTE
4) The MMU constructs the physical address (PTE + Virtual Page offset) sends that

cache/main memory.
5) The cache/main memory returns the data

Note that in step 4, the Virtual Page offset is the same as the Physical Page offset.

Page

Table

Base

Register

(PTBR)

Virtual Page Number (VPN) Virtual Page Offset (VPO)

Physical Page Number (PPN) Physical Page Offset (PPO)

Valid Physical Page Number (PPN)

Version 1.3.7 Page 159 of 175

The key thing to note here is that the Virtual Address is divided into two parts to
enable this translation.

The first part (Virtual Page Number - VPN) refers to index into the page table and the
second part refers to the offset into the page (Virtual Page offset - VPO). The offset
into the page is the same for both the Virtual Page (VP) and Physical Page (PP).

The contents of the page table at the index gives us the physical page number (PPN).

The physical address is obtained by concatenating the PPN with PPO (which is the
same as the VPO).

Page Fault case:

Unlike as Page Hit case that is handled entirely in hardware, a page fault case requires
cooperation between hardware and the OS Kernel.

Steps 1 to 3 above are the same, but starting at step 4 the following happens:

4) The valid bit in the PTE is zero, so the MMU triggers an exception which
transfers control in the CPU to a page fault exception handler in the OS kernel.
5) The fault handler identifies a victim Physical Page, flushes it (if required).
6) The fault handler pages-in the new page and updates the PTE in memory.
7) The fault handler returns to the original process, causing the faulting
instruction to be restarted.

Why do you think that there is seldom a cache miss in step 3 above when the page table
was accessed?

Multi-Level Page Tables

So far we assumed a single page table per process. The problem with this approach is
that we would need to dedicate a fairly large about of memory for every process. Eg. for
a 32-bit address space, and 4KB pages, a 4-byte PTE, we would need a 4MB page table.

232 = 0x 1 0000 0000 (4GB address space)
4KB = 0x 1000 (4KB per page)

Number of pages = 0x 1 0 0000 (1MB page entries)

Each entry will include the physical page number as well as additional bits for the
“valid”, “SUPERVISOR”, “READ”, “WRITE” and “DIRTY” bits. Assuming we use a total of 4

Version 1.3.7 Page 160 of 175

bytes per entry, we will have a total of 4MB per page table per process. These figures
will be substantially higher on a 64-bit system.

This means that even if a process never uses the full address space (which it seldom
will), we waste all this space for the page table. The bulk of the PTEs will be marked
UNALLOCATED.

One solution to this problem is to have multi-level page tables, where the entry at level
k, point to another page table at level k+1.

https://en.wikipedia.org/wiki/Page_table

Let’s take an example with a 2-level page table where there are 1024 (10 bits) level 0
entries, each of which points to the start of a page table at level 1. This level 1 page also
has 1024 (10 bits) entries and each of those entries points to a 4KB (12 bits) Virtual
page. So the 32 bit address is broken into 2 10-bit page table index and a 12-bit page
offset. Hence each page table entry in level 0 points to a total of 4MB of the address
space (4096 x 1024 = 0x1000 x 0x400 = 0x400000).

This scheme reduces memory usage substantially since we only need to store the level 0
page table in memory and if a level 0 entry is NULL, we don’t need the corresponding
level 1 entry.

https://en.wikipedia.org/wiki/Page_table

Version 1.3.7 Page 161 of 175

As an example, assume we have a one process that only uses 1 page. Our Page offset
will take 12bits. The remaining 20 bits are split between level 0 and 1. Our level 0 page
table will have 1024 entries each of 4 bytes for a total size of 4KB. Since we only use 1
page, we will only have one valid entry in this table and it will point to another 4KB level
2 table. That is a total of 8KB, which is substantially (512x) smaller than the 4MB option
with a single level page table.

Note that if the process used its full virtual space, this two-level page table would use
more memory than the single page solution since the 1st level table will add 4KB to the
4MB used by all the 2nd level tables.

The worst case is when a process allocates one page from every possible 2nd level table.
In this case we will need all the 2nd level tables along with the 1st level table only to
support a total of 1024 pages.

A more general solution is to divide the VPN of a virtual address into multiple sections
representing offsets into multiple page tables as shown in Fig 9.18 on page 856. In
reality most page table are 3 or 4 level page tables.

Speeding Up Address Translation with a TLB

As would be obvious, VM comes at a price. Every single access to memory involves the
following at a minimum:

1) Accessing the Page table
2) Translating the address
3) Access in the data in RAM

And when there is a page fault…

4) Servicing the page fault with data from Disk

One area where we can optimize is the accessing of the page table. One way to speed
up the Page Table lookup is to keep a cache of the Page Table in the MMU. This type of
cache is referred to as the Translation Lookaside Buffer (TLB).

Much like a regular cache, access to the TLB is based on a Set Index and a Tag. The set
number is determined based on a few lower bits of VPN (first part of the Virtual
Address) that we previously used to index into the page table. The higher bits of the
VPN refers to the tag. For a given Set Index and Tag, there is only a single PTE in the
TLB.

Version 1.3.7 Page 162 of 175

https://en.wikipedia.org/wiki/Page_table

A TLB can be fully associative. The advantage of a fully associative TLB is that you can fill
any TLB location with any PTE. This means that you are only limited by the size of the
TLB. You have no restriction on which Set a TLB entry must fit into (since effectively
there is only 1 set in a fully associative TLB). This can be very advantageous. Think of a
case where you decide to go with a Direct Mapped TLB (1-way associative – 1 set and 1
tag per set). Think of a process that accesses 2 virtual addresses both of which fall in the
same set, but different tags. Access to the first VA will have to replace the TLB entry for
the second VA and vice-versa. This will lead to substantially high TLB misses. A fully
associative TLB is the other extreme compared to a Direct Mapped TLB and in a fully
associative TLB, you are not limited by the set, but only by the amount of TLB memory.
But a fully associative TLB is only workable for a small TLB, since searching for a TLB
entry will be expensive.

Note that a TLB miss will require an additional memory access much like any cache miss.
See figure 9.15 on page 854. Note also that TLB become invalid during a process switch.
Unless the TLB supports tagging by process, the TLB will need to be invalidated during a

https://en.wikipedia.org/wiki/Page_table

Version 1.3.7 Page 163 of 175

process switch. And even if a TLB support tagging by process, the TLB will need to be
invalidated when a process exits.

Other speed up techniques include the use multiple TLBs for instruction and data as well
as multiple level TLBs, much like multiple level caches (See here for more information).

A good flow chart on TLB access is available here..

https://en.wikipedia.org/wiki/Translation_lookaside_buffer

https://en.wikipedia.org/wiki/Translation_lookaside_buffer
https://en.wikipedia.org/wiki/Translation_lookaside_buffer

Version 1.3.7 Page 164 of 175

TLBs in the context of multilevel Page Tables

In the case of multilevel page tables, the page table base register (PTBR) points to the
base of the level 0 page table (Note that PTBR contains a physical address). Looking up
an entry in each subsequent table level can be pretty expensive. The TLB plays an even
more significant role in this case. Caching each lookup of a PTE in the TLB avoids future
look ups for the same VPN, thus making it just as fast as single level table case. If the TLB
does not support process tags, then during each context switch, the TLB will have to be
invalidated and the process has to start with a “cold cache”. In this case, the scheduler
context switch threshold will play a critical role in performance since each context
switch will require the TLB to “warm up”.

Note that the TLB can consume a substantial amount of the power (of the order of 10%)
and hence they are kept relatively small. Usually less than 2K.

Locality to the Rescue again

While VM systems may appear highly inefficient when one considers the true cost of
page faults, they are effective because most programs exploit the concepts of locality
either consciously or unconsciously.

Note that a page table can have 1MB of entries or more. A TLB may be as small as 64
entries. The reason we get away with such a small number of TLB entries is that each
entry can map to 1 full page (4KB) of PA. As long as our program accesses memory
within that page, we can continue to use the same TLB entry.

Integrating Caches and VM

In VM systems with caching, there is the option of using VA or PA to access Cache. Most
systems use PA, so they can defer all other memory access restrictions to the MMU. See
figure 9.14 (Page 853)

Summary of Cache Look-up

General Cache Look-up steps

1) Identify number of least significant bits for byte offset
2) Identify number of next least significant bits for set Index
3) The remaining bits represent the Tag

Page Table look-up steps

1) Identify number of least significant bits for page offset

Version 1.3.7 Page 165 of 175

2) Identify remaining bits as Virtual Page Number (VPN)
3) For single page table, VPN represents index into the single page Table
4) For multi-level page table, identify the number of most significant bits needed to

index into the level 0 table.
5) Then identify the number of the next most significant bits needed for each

subsequent table.

MMU Cache Look-up steps

1) Identify number of least significant bits for page offset
2) Identify remaining bits as Virtual Page Number (VPN)
3) Identify the number of bits in VPN needed to represent the MMU cache Set

number
4) The remaining bits represent the Tag

Version 1.3.7 Page 166 of 175

Linux Process Address space

Discuss Fig. 9.26 on page 865
Discuss Fig. 9.27 on page 867
Discuss Linux Page Fault Exception handling on page 868

Memory Mapping

Linux initializes VM by associating it with objects on disk.

Areas can be mapped to two types of objects

1) Regular file in the Linux file system
2) Anonymous file (eg. memfd_create would create this – demand-zero pages)

Version 1.3.7 Page 167 of 175

Once a virtual page is initialized, it is swapped back and forth between a special swap
file maintained by the kernel.

The advantage of Memory Mapping is that virtual memory could be integrated into the
file system and then the page fault handler can be used to do the loading of memory.

Shared Objects Revisited

A lot of times, regions of memory in different processes will be identical. A classic
example is when the same process is instantiated multiple times. In this case, the code
segment would be identical. Other situations include the use of shared libraries. To
duplicate these common locations would be a waste of physical memory. Memory
Mapping allows us to avoid this duplication by letting the virtual memory in multiple
processes to point to the same physical memory.

An object can be mapped into VM as either a “shared object” or a “private object”.
When multiple processes map this object, they all map initially to the same physical
memory. However in the case of a “private object”, the first attempt by a process to
write to a page in this location generates a protection fault. The fault handler will
determine that the process was attempting to write to a page in a “private object” and
hence will create a copy of that page in another location in physical memory and alter
the page tables to point to this location. This technique is called “copy-on-write”. The
idea is to delay the creation of the copy until such a point as it is unavoidable. Note that
for a shared object, writes occur in the same location and are visible to all who share the
object.

The fork Function Revisited

In our assignments we have created threads but not processes. Below is a sample
showing how to create processes in Linux using the fork system call.

#include <unistd.h>
#include <sys/types.h>
#include <errno.h>
#include <stdio.h>
#include <sys/wait.h>
#include <stdlib.h>

int global_variable;

int main(void)
{
 pid_t childPID;
 int local_variable= 0;

 childPID = fork();

 if(childPID >= 0) // fork was successful
 {
 if(childPID == 0)
 {
 // child process
 local_variable = 10;

Version 1.3.7 Page 168 of 175

 global_variable =11;
 printf("\n Child Process : local_variable = [%d], global_variable[%d]\n",

local_variable, global_variable);
 }
 else
 {
 //Parent process
 local_variable = 20;
 global_variable =21;
 printf("\n Parent Process : local_variable = [%d], global_variable[%d]\n",

local_variable, global_variable);
 }
 }
 else
 {
 // fork failed
 printf("\n Fork failed,n");
 return 1;
 }

 return 0;
}

When the fork call is made by a process, the Kernel makes an exact copy of the current
process’s mm_struct, area structs, and page tables. It flags each area struct as in both
processes as private copy-on-write. That way the first attempt at write, will cause a copy
to be created.

The execve Function Revisited

In Linux, execve is used to load an executable into the current process space. In general
fork is used to create the process space and if the parent does not include the code of
the child, the execve call is used to map the child’s code from a file in the file system.
This involves the followings steps:

1) Delete existing user areas
2) Map private areas
3) Map shared areas
4) Set program counter

User-Level Memory Mapping with the mmap Function

As seen in assignment 3, Linux allows the use of mmap to create new virtual memory
areas to map to shared objects. You get to define the access permissions to this shared
objects.

Version 1.3.7 Page 169 of 175

Dynamic Memory Allocation

While “mmap” and “munmap” functions can be used to create and delete areas in the
process virtual address space, it is easier for C programmers to us the more portable
dynamic memory allocation functions like malloc.

Dynamic allocators maintain an area of the process’s virtual memory known as the
heap. This is a “Demand-Zero” area and the kernel maintains a pointer to the top of this
area referred to as a “brk” (break).

An allocator is responsible for maintaining a collection of various-size blocks where each
block is a contiguous chunk of virtual memory that is either allocated or free.

There are 2 kinds of allocators – Explicit and Implicit. The difference being that in
Explicit allocators, allocated blocks have to be explicitly freed while in Implicit allocators,
the freeing is done by the system when it recognizes the memory is no longer in use
using garbage collectors.

Note that C standard library provides an Explicit allocator (malloc) and these allocations
are freed using the “free” API. The pointer passed to “free” must be the same as the one
returned by malloc.

Dynamic allocations are most useful when the size of a required allocation is only
available at runtime.

Allocator Requirements and Goals

• Handling arbitrary request sequences

• Making immediate responses to requests

• Using only the heap

• Not modifying allocated blocks

Fragmentation

Fragmentation occurs when unused memory is not available to satisfy an allocation
request. There are 2 kinds of fragmentation – Internal and External.

Internal fragmentation occurs when the allocator allocates more memory than required
to service an allocation request. This might be designed to meet memory management
or alignment requirements.

Version 1.3.7 Page 170 of 175

External fragmentation occurs when there is enough aggregate free memory to satisfy
an allocation request, but this memory is not available in a contiguous block.

There any many heuristics employed to reduced fragmentation, including reserving
different pools with different sizes.

Implicit Free Lists

With the use of a block header preceding each allocation, where the header maintains
the status of the allocation (allocated or free) and the size (see figure 9.35 and figure
9.36 page 883), it is possible to form an implicit list of free blocks.

Placing Allocated Blocks

Honoring a request for a memory allocation, involves walking the free list to find the
appropriate block to return. Three common placement policies are first fit, next fit and
best fit. First fit finds the first free block that accommodates the requested size from the
beginning of the free list, next fit starts the search from where it left off last, and best fit
attempts to find the optimal block to match the request. Pros and cons of each
approach discussed in section 9.9.7 in page 885.

Splitting Free Blocks

Once a free block is located, the next policy decision is how much of free block to
allocate. There are usually 2 options – allocate the full block or split the block into the
requested size (plus header) and the remainder.

Getting Additional Heap Memory

If the allocator runs out of free memory to honor a request, it will need to get the kernel
to extend the heap. It does this by calling the “sbrk” function and passes it the size by
which to increment. It can also call the “brk” function a pass it a new value for the
“end_data_segment”.

Coalescing Free Blocks

When the allocator frees a block, there may be adjacent blocks that are also free. Not
coalescing these adjacent free blocks can lead to false fragmentation where a request
for a large allocation can’t be fulfilled because all free blocks are of smaller size.
Coalescing these blocks leads to another policy decision – Coalesce during the free
operation or Coalesce at some later point based on some heuristic like a failing
allocation.

Coalescing with Boundary Tags

Coalescing is easy when the next block is free. But what if it is the previous block that is
free? The only way to do this would be to walk the entire implicit list till the point of the

Version 1.3.7 Page 171 of 175

current free block while maintaining a pointer to the previous block. To avoid this, a
clever option is to duplicate the header information in the footer.

Garbage Collection

Implicit allocators rely on garbage collectors to free memory that are no longer in use.
Garbage collectors define “in-use” if they are reachable via a directed path in a graph
where “root nodes” represent pointer variables outside the heap that points to heap
locations and “heap nodes” represent heap allocations (see Fig: 9.49 page 903). For
garbage collectors to be effective, the language must place tight control over how
applications create and use pointers. Garbage collection can occur in dedicated threads
that constantly update the reachability graph and reclaim garbage or they can be
exercised on demand. Mark&Sweep garbage collection is discussed in 9.10.2 page 903.

Common Memory-related Bugs

1) Dereferencing Bad pointers
2) Reading uninitialized Memory
3) Allowing stack Buffer overflows
4) Assuming pointers and the objects they point to are the same size
5) Making off-by-one errors
6) Referencing a pointer instead of the Object it points to
7) Misunderstanding Pointer Arithmetic
8) Referencing nonexistent variables
9) Referencing Data in Free Heap Blocks
10) Introducing Memory leaks

Version 1.3.7 Page 172 of 175

Example problems

Problem 1

A computer system has byte-addressable memory and uses a paged virtual memory

system, using 64-byte pages. It uses a 12-bit virtual address and a 10-bit physical

address. Its Translation Lookaside Buffer (TLB) is 4-way set-associative and has a

total of 16 entries. It uses an L1 cache which is physically addressed and direct

mapped, with 4 bytes per cache line and a total of 16 cache sets.

a) Show how the virtual address is divided between the Virtual Page Number and

the Virtual Page Offset.

• 64 byte pages require 6 bits for page offset. Hence the 12-bit virtual

address is divided into 6-bits VPO and 6-bits VPN

b) Show which bits of the virtual address are used and how they are used for

accessing the TLB.

• Only the 6-bit VPN is used to access the TLB

• TLBs only have one PTE for a given Set and Tag. Hence no bits for byte

offset and there must be 4 Sets (since there are 16 entries and 4 lines per

set).

• For 4 Sets, we need 2 bits LSbs of VPN to identify the Sets and the

remaining 4-bits of VPN are the Tag.

c) Show which bits of the physical address are used for the Physical Page Number

and the Physical Page Offset.

• Physical page offset is the same as the Virtual Page offset. Hence 6 bits

for PPO.

• Since Physical address is only 10 bits, we have only 4 bits for the PPN.

d) Show which bits of the physical address are used and how they are used when

looking for the data in the L1 cache.

• 4 bytes per cache line, hence 2 LSbs for byte offset

• 16 Cache Sets, hence the next 4 bits for Set number

Version 1.3.7 Page 173 of 175

• Remaining 4 bits in physical address uses as Tag

e) Given a virtual address 0x2D4

0x2D4 = 0010 1101 0100

i. What is the Virtual Page Number? 0010 11 = 0x0B

ii. What is the Virtual Page Offset? 01 0100 = 0x14

iii. What is the TLB index? 11 = 0x3

iv. What is the TLB tag? 0010 = 0x2

Problem 2

A computer system uses byte-addressing, with a two-level page table, a 16-bit

virtual address, a 4KB page size and 16-bit physical address. The TLB has two

sets, each set being 2-way associative. The current state of the page tables and

TLB is shown below.

 Level-0 PT PT at 0x3580 PT at 0x4808 PT at 0x4828 PT at 0x4400

PTI PTA V PPN V PPN V PPN V PPN V

0 0x3580 1 A 0 0 1 D 0 5 1

1 0x4808 0 0 0 4 1 2 1 E 0

2 0x4828 1 F 1 8 1 0 1 0 1

3 0x4400 1 2 1 C 0 0 0 A 1

PT = Page Table, PTI – Page Table Index, PTA = Page Table Address,

PPN = Physical Page Number, V – Valid, PTE – Page Table Entry

 TLB Set 0 TLB Set 1

V Tag PTE V Tag PTE

0 0 E 1 4 2

1 1 2 0 1 F

For each virtual address listed below:

• Is the page containing this virtual address currently in physical (DRAM)

memory?

• What physical address corresponds to the virtual address?

• What steps are taken to determine the physical address?

Version 1.3.7 Page 174 of 175

a. 0x9A60

• 0x9A60 = 1001 1010 0110 0000

• Page Size = 4KB ➔ 12 bits required for VPO/PPO (4 bits left for

VPN)

• TLB has 2 Sets ➔ 1 bit required for TLB Set Index (3 bits left for

Tag)

• VPN is 1001

• TLB Set is 1, TLB Tag is 4

• PTE is available and valid in TLB. PTE is 2.

• Hence VA 0x 9A60 is currently in DRAM and its PA is 0x2A60.

b. 0x30A0

• 0x30A0 = 0011 0000 1010 0000

• TLB Set is 1, TLB Tag is 1

• PTE is available, but invalid in TLB. Hence we have to go the Page

Table.

• Level 0 PT has 4 entries, so we need 2 bits (MSb) to access that. (00)

• We need the next 2 bits to access the Level 1 PT. (11)

• We need 12 bits for the VPO/PPO.

• Level 0 PT index is “00” and value at index “00” is 0x3580

• Level 1 PT index is “11” and value at index “11” is “2”

• Hence VA 0x30A0 is currently in DRAM and its PA is 0x20A0

Version 1.3.7 Page 175 of 175

Week 11: Optimizing Program Performance

Justification and methods for Program optimization

• When a computational task is so demanding that it takes days to execute, making it run
just a little faster can have a significant impact.

• Writing efficient code starts with appropriate algorithms and data structures.

• Write code that exploits the compilers ability to optimize code.

• Divide the program tasks into portions that can be computed in parallel while optimizing
each task.

• Identify the code that executed repeatedly and focus your energy to optimize it. Use a
“profiling” tool for this identification (Discuss how a profiler works).

• Eliminate unnecessary function calls, conditional tests and memory references.

• Understand and exploit the architecture of the system in which your program will run
(understand instruction cycle costs, understand memory architecture, pipelining etc).

• Exploit locality to allow compilers to store the value of variables in registers for multiple
access.

• Understand compiler arguments to choose optimization level (eg. gcc uses –xg where x
is the level you choose)

• Compilers are also limited in their ability to optimize by the fact that they have to
ensure optimization will work for every possible input (eg. memory aliasing can cause
different results).

• Performance is best expressed as “cycles per element” (CPE) where “cycle” refers to the
number of clock cycle and “element” refers to a computation element. We use “cycles”
to abstract the difference based on different clock speeds and we use “elements” to
abstract the number of loop iterations (See examples on page 539).

• Avoid loop inefficiencies – only compute things that are changing in each loop.

• Eliminate unneeded memory references

Processor Architecture Details

• Most of the optimizations discussed thus far are generic optimizations that did not rely
on particular features of a target processor. If you have the luxury of targeting a
particular processor, then understanding the inner working of this processor allows you
to optimize even further.

• Discuss pipelining

• Discuss out-of-order processing (figure 5.11 page 555)

• Discuss branch prediction

