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Preface  

A hundred years from now when history judges our era, it is very likely that Software Engineering will take 
the credit for the innovations that define our time. But Software Engineers will in turn have to credit the 
Hardware Engineers for the General Purpose Microprocessor, without which the pace of innovation would 
never have come close to what we have achieved today. The General Purpose Microprocessor in turn must 
credit the technologies that allowed the Large Scale Integration of Solid State Electronic components. Solid 
State Electronics must in turn give credit to the Vacuum Tubes for defining the possibilities of Electronics. 
And so the list goes on.  
 
Our quest for knowledge, through the apparatus of science, is a continuum of contributions and innovations. 
While the final goal of science is, arguably, the understanding of the absolute laws that govern matter and 
spirit, the journey of science provides several revelations along the way. Some of these revelations may 
contradict other revelations, but that does not take away its value to mankind. Niels Bohr (Nobel prize winner 
for Physics in 1922) once said that “the opposite of a correct statement is a false statement. But the opposite 
of a profound truth may well be another profound truth”. The scientific process of knowledge gathering 
inherently allows for the continual evolution in our understanding of matter and spirit. 
 
In this module on the Fundamentals on Digital Design, we will get a broad overview of the many areas of 
science that come together in the technologies used to design modern digital electronic circuitry. At the 
completion of this module the student would be expected to have an adequate comprehension of the 
relevant basic scientific laws of matter and the derived technologies that exploit these laws in the 
manufacture of modern digital circuitry.   
 
I will defer exercises in Application Specific Integrated Circuits and General Purpose Microprocessor 
designs to future modules. However the fundamentals required for both of these tasks will be adequately 
covered in this module. Hence this module will serve as a foundation and a prerequisite for all future 
modules in hardware design in the Accelerated Learning Series.  
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1.0 – Fundamental Mathematics 

If you can count, you probably have enough background to start this course on digital design. However you 
are probably used to counting elements in sets of 10. Digital electronics refers to a field of study where there 
are only 2 unique elements. So counting in sets of 2 (base 2) is a necessary prerequisite. So in this section 
on Fundamental Mathematics we will study number bases and in particular we will study base 2 and base 
16 and how they relate to the base 10 numerals that we are normally accustomed to. 
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1.1 – Arithmetic and Number Bases  
 
In the diagram below how many “X’s” are there? 
 
 

X X X   X X X   X X X   X X X   XX X 
 

X X X 
 
If you count with Arabic numerals, you will probably start by counting 1, 2, 3 and so on and come up with an 
answer of 18. You used a series of unique symbols while counting from 1 to 9, but when you got to the X 
after the 9th X, you decided it was “10”. You didn’t come up with a unique symbol for the 10th X, but instead 
decided to call it 1 full set with a remainder of 0. Then when you counted the next X after the 10th, you call it 
11 or 1 full set with a remainder of 1. Finally when you finish counting all of them, you say it is one full set 
with a remainder of 8.  
 
Let us try to understand the operation of counting a little better.  
 
Every time we run out of a unique symbol we add 1 to the digit on the left. So what happens when we run 
out of unique symbols in the digit to the left of the first digit? We will add a 3rd digit to the left of the 2nd digit 
and so on.  
 
The first digit (or the right most digit) also referred to as the “least significant digit” has a weight factor of “1”. 
In other words, the number in the least significant digit must be multiplied by “1” to get the total number of 
elements represented by that digit.  
 
The second digit from the left has a weight factor of 10. In other words, the 2nd digit multiplied by “10” gives 
us the total number of elements represented by that digit. 
 
Similarly the total number of elements represented by the third digits can be calculated by multiplying its 
value with “100”. 
 
The weight associated with any particular digit is 10 to the power of the position of the digit (also written as 
10N, where N is the position). The sign “18” implies (1 x 101) + (8 x 100).  The least significant digit has a 
position of “0” and the next digit to the left of it has a position of “1” and so on. This way of defining a full set 
as ten elements is referred to as the base 10 arithmetic.  
 
What if we had only 8 unique symbols? These symbols will be 0,1,2,3,4,5,6,7. Then if we could count the X’s 
again, we will say we have 2 full sets with a remainder of 2 or 22.  This is defined as base 8 arithmetic. In 
base 8, the sign “22” implies (2 x 81) + (2 x 80). So the weight associated with any particular digit is 8 to the 
power of the position of the digit. Note that the position of the digit is always counted (starting at zero) from 
right to left.  
 
What if we had only 4 unique symbols? These symbols will be 0,1,2,3. Then if we could count the X’s again, 
we will say we have 100 full sets with a remainder of 2 or 102. This is defined as base 4 arithmetic. In base 
4, the sign “102” implies (1 x 42) + (0 x 41) + (2 x 40). So the weight associated with any particular digit is 4 to 
the power of the position of the digit.  
 
What if we had only 2 unique symbols? These symbols will be 0,1. Then if we could count the X’s again, we 
will say we have 1,001 full sets, with a remainder of 0 or 10010. This is defined as base 2 arithmetic. In base 
2, the sign “10010” implies (1 x 24) + (0 x 23) + (0 x 22) + (1 x 21) + (0 x 20). So the weight associated with 
any particular digit is 2 to the power of the position of the digit.  
 
What if we had 16 unique symbols? These symbols will be 0,12,3,4,5,6,7,8,9,A,B,C,D,E,F. Then if we could 
count the X’s again, we will say we have 1 full set, with a remainder of 2 or 12. This is defined as base 16 
arithmetic. In base 16, the sign “12” implies (1 x 161) + (2 x 160). So the weight associated with any 
particular digit is 16 to the power of the position of the digit.  
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1.2 - Converting from and to Base 10 
 
Since most of us are used to base 10, it is often our base of reference. A value represented in base 10 will 
make inherent sense to us. So in this section we will discuss a mathematical method to convert from and to 
base 10.  
 
In the last section we first counted the number of Xs in base 10. Then we counted in base 8, 4, 2 and 16 
respectively. Each time we counted in a particular base, we regrouped the Xs into the number of unique 
digits available in that base. This regrouping can also be achieved mathematically by successive division. 
 
For example to convert “18” in base 10 to base 2, we do the following successive division; 
 
2)18  
   9 remainder 0 

2)9 
   4 remainder 1 

2)4 
   2 remainder 0 

2)2 
    1 remainder 0 

2)1 
    0 remainder 1 

 
In other words, 18 in base 10 is equivalent 10010 in base 2. Note that the result is built up from right to left. 
This means the result of the first division is the right-most digit. 
 
Converting the binary number back to decimal is equivalent to summing the weighted values of each digit in 
the binary number. The weights being determined by the position of the digit as discussed in the previous 
section. 
 
So for example to covert 10010 in base 2 to base 10 we do the following sum; 
 
(1 x 24) + (0 x 23) + (0 x 22)  + (1 x 21) + (0 x 20) = 16 + 0 + 0 + 2 + 0 = 18 
 
 
Let us repeat the above example for base 16. 
 
16)18 
     1 remainder 2 

16)1 
     0 remainder 1 

 
In other words, 18 in base 10 is equivalent to 12 in base 16 
 
And to covert 12 in base 16 to base 10, we do the following sum; 
 
(1 x 161) + (2 x 160) = 16 + 2 = 18 
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1.3 – Significance of Base 2, 4, 8 and 16  
 
Digital computers only have 2 unique symbols. These symbols correspond to electrical energy potential 
measurements in Volts. But for simplicity we will say that the unique symbols are 0 and 1. In general a “0” 
will correspond to 0 Volts and “1” will correspond to +5 Volts. But the exact Voltage values are dependent on 
the type of electronic technologies used. 
 
So if a digital computer were to count the Xs in section 1.1, it would come up with an answer of 10010, 
which is the same result we got when counting in base 2. Digital computers perform all their operation in 
binary (or base 2) arithmetic. Hence becoming proficient with binary arithmetic is very useful in 
understanding and trouble shooting digital computer behavior. 
 
In the previous section we discussed the successive division method and the weighted multiplication method 
for converting numbers from and to base 10. However to covert numbers between bases 2, 4, 8 or 16 there 
is an easier technique. Learning this technique will prove very useful when dealing with digital computers.  
 
Any number represented in binary can be converted to base 4 by dealing with 2 digits at a time starting from 
the right. For example to convert 10010 in base 2 to base 4, we can first convert the least significant 2 digits, 
which are “10”. This is a 2 in binary and 2 is a unique digit available in base 4. So the least significant 2 
digits can be written as “2” in base 4. The next 2 digits are “00”. This is a ‘0” in base 2 and “0” is a unique 
digit available in base 4. So these two digits can be written as “0” in base 4. The next two digits are “01” 
(note adding a zero to the left has no value) and that is “1” in base 2 and 4. So the number 10010 in base 2 
can be translated visually to 102 in base 4 
 
01 00 10 (base 2) = 1 0 2 (base 4) 
 
Similarly taking 3 binary digits at a time, we can visually convert binary numbers into octal (base 8) numbers.  
 
010 010 (base 2)   =  2 2 (base 8) 
 
And taking 4 binary digits at a time, we can visually convert binary numbers into hexadecimal (base 16) 
numbers. 
 
0001 0010 (base 2)  =  1 2 (base 16) 
 
 
One of the problems with binary numbers is that it can be very cumbersome to deal with, since even a 
relatively small number like 18 in base 10 will require 5 digits to represent it in binary. So using a higher 
base can prove very efficient in presentation. But there isn’t an easy visual way to convert from binary to 
base 10. Hence most computer professionals prefer to use base 16 or hexadecimal representation when 
presenting numbers. 
 
The visual method of conversion can also be used to go from base 4, 8 or 16 to binary. The operation is 
exactly the inverse of the method used above to go from binary to a higher base.  
 
So for example to convert a hexadecimal value of “12F” into binary, we take each digit and represent it by 4 
binary digits. An “F” in base 16 is the same as “1111” in binary. A “2” in base 16 is the same as “0010” in 
binary. And a “1” in base 16 is the same as “0001” in binary. 
 
1 2 F (base 16) = 0001 0010 1111 (base 2) 
 
Learning the binary equivalent for any hexadecimal digit will prove very handy and so I have provided the 
conversions below. Also note that a base 16 representation is often prefixed with a “0x”. So the number 
“12F” in base 16 will be written as 0x12F. A binary number is often denoted by a terminating “b”. So 10010 
in base 2 will be written as 10010b. 
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Hexadecimal Binary Hexadecimal Binary Hexadecimal Binary 

0x0 0000b 0x6 0110b 0xC 1100b 

0x1 0001b 0x7 0111b 0xD 1101b 

0x2 0010b 0x8 1000b 0xE 1110b 

0x3 0011b 0x9 1001b 0xF 1111b 

0x4 0100b 0xA 1010b   

0x5 0101b 0xB 1011b   
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2.0 – Fundamental Logic 

It was the Greek philosopher Aristotle who first proposed a system for reasoning and deriving truths. 
Aristotle defined a system where one starts with a known truth that is indisputable and always true. This 
starting point is referred to as a “premise”. From this premise he then defined a way to derive other truths by 
using a method of argumentation that classified a derived statement as either true or false. If a derived 
statement was classified as true, then it can effectively be a premise for a subsequent derivation. The 
uniqueness of this scheme is that there are only two possibilities for a derived argument. It is either true or it 
is false. It cannot be both at the same time. And it cannot be neither true nor false. This system for deriving 
truths was defined as “logos” or “logic” and was part of Aristotle’s greater dissertation on rhetoric which 
included “ethos” and “pathos”. 

It was the British mathematician, George Boole who converted Aristotle logical system of reasoning into a 
mathematical form with well defined mathematical rules for deriving relationships between mathematical 
variables that conformed to the limitation that they represented only two possible values – true or false. This 
system of mathematics is referred to as Boolean Algebra. 

It was almost a hundred years later, in the early 1900s, that Claude Shannon discovered that Boolean 
Algebra had an invaluable application in Digital Electronics, where the state of an electronic system was 
always defined as a “on” or “off”. At the time George Boole worked on Boolean Algebra, he would have 
never imagined the practical value of his efforts. And yet today, Boolean Algebra is indispensable in the 
design of digital circuits. 
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2.1 – Boolean Arithmetic 
 
Let us start our study of Boolean algebra by defining the possible operations one can use in Boolean 
arithmetic. First of all the fundamental rule in Boolean algebra is that a variable can have one of two values 
– “0” or “1”. It cannot have any other value. Boolean arithmetic allows for addition and multiplication of 
Boolean variables. Note that subtraction and division are disallowed. To allow subtraction, we will need the 
use of negative numbers. But remember that Boolean variables can only be a “0” or a “1”. There are no 
negative numbers. And division is a compounded form of subtraction and hence that too is disallowed. 
 
The rules for addition are as follow; 
 
0 + 0 = 0 
0 + 1 = 1 
1 + 0 = 1 
1 + 1 = 1 
1 + 0 + 1 + 1 + 1 = 1 
 
Note that the first three operations should seem normal for someone used regular arithmetic. However the 
last two operations are odd. We have already stated that the only values a variable can have in Boolean 
Algebra are a “1” or a “0”. If you add two 1s, the sum cannot be expected to be a “0”. And the only other 
option available is “1” and so “1 + 1 = 1” in Boolean algebra. Further it does not matter how many variables 
you add, as long as any one of them is a “1” the answer is “1” as shown in the last operation above. 
 
The rules for multiplication are as follow; 
 
0 x 0 = 0 
0 x 1 = 0 
1 x 0 = 0 
1 x 1 = 1 
1 x 0 x 1 x 1 x 1 = 0 
 
When it comes to multiplication, the rules are identical to regular algebra. 
 
Like regular algebra, Boolean variables can also be represented by names. A Boolean variable can be 
referred to as “A” or “B” or “C” and so on. And any variable can be defined to have a value of “1” or “0”. If the 
variable “A” has a value of “1” then the complement of “A” (also referred to as A-NOT and denoted as A’) will 
have its opposite value, which in this case would be a “0”. 
 
In regular arithmetic there are some operations that always have a predefined answer like the addition of “0” 
to any variable will not change the value of that variable. These are referred to as identities or always true. 
Now let us discuss the identities in Boolean arithmetic. We will use “A”, “B” and “C” as Boolean variable in 
the illustrations below. 
 
A + 0 = A 
A + 1 = 1 
A + A = A 
A + A’ = 1 
 
A x 0 = 0 
A x 1 = A 
A x A = A 
A x A’ = 0 
 
Complementing A an even number of times will always result in A. 
 
A + B = B + A (Commutative property for addition) 
A x B = B x A (Commutative property for multiplication) 
 
(A + B) + C = A + (B + C) (Associative property for addition) 
A x (B x C) = (A x B) x C (Associative property for multiplication) 
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A x (B + C) = (A x B) + (A x C) (Distributive property) 
Addition in Boolean algebra is identical to an “OR” operation in digital design. An “OR” circuit will output a “1” 
if any of its input is defined as a “1”. 
 
Multiplication in Boolean algebra is identical to an “AND” operation in digital design. An “AND” circuit will 
inspect all the voltage values at its input and define an output of “1” if all the inputs are “1”. If any input is “0”, 
the AND logic will output a “0”. 
 
There is one operation in digital design that we have not discussed in the Boolean arithmetic operations 
above. This is the exclusive-OR operation. An “exclusive-OR” is the equivalent of (A x B’) + (A’ x B). Another 
way of looking at this is to think of this as an “OR” operation with a minor twist that if both A and B are “1”, 
then the output is “0”.  
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2.2 – Boolean Rules for Simplification 
 

The most practical use for Boolean algebra in digital design is in the simplification of digital circuits. Much 
like regular algebra where we can eliminate the need for several variables based on our knowledge of 
identities, the same is true in Boolean algebra. And since digital electronics have variables that conform to 
the Boolean constraint of 2 possible values for any variable, the rules of simplifying Boolean algebra are also 
applicable to digital design. We will list some of these simplifications in this section. But how they relate to 
simplification in digital circuits will be become more evident in section 4. 
 
Rule 1: 

 
A + (A x B) = A 
 
Proof: We know that “A x 0 = 0”. We also know that “A x 1 = A”. So depending on the value of “B”, the 

possibilities in the above equation are “A + 0” or “A + A”. And we know the answer to both is always “A”. 
 
 
Rule 2: 

 
A + (A’ x B) = A + B 
 
Proof: From the last rule, we can rewrite A as “A + (A x B)”. Then the rule above becomes “A + (A x B) + (A’ 

x B)”. Using the distributive property we can rewrite this as “A + (B x (A + A’)). But (A + A’) is always 1. So 
this reduces to “A + (B x 1)”. Which is the same as “A + B”. 
 
Rule 3: 

 
(A + B) x (A + C) = A + (B x C) 
 
Proof: “(A + B) x (A + C)” is the same as “(A x A) + (A x C) + (B x A) + (B x C)”, which is the same as “A + (A 

x C) + (B x A) + (B x C)”. But we know that “A + (A x B)” is A. So the equation becomes “A + (A x C) + (B x 
C)”. Similarly “A + (A x C)” is also A. So the equation becomes “A + ( B x C)”. 
 
Rule 4: (De Morgan’s theorem) 

 
(A x B)’ = A’+ B’ 
 
Proof: The proof for De Morgan’s theorem is long, but can be easily shown empirically for the 2 variable 

case. 
 
 
Rule 5: (De Morgan’s theorem) 

 
(A + B)’ = A’ x B’ 
 
Proof: The proof for De Morgan’s theorem is long, but can be easily shown empirically for the 2 variable 

case. 
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2.3 – Truth Tables 
 
In the previous two sections we learnt the rules for Boolean arithmetic and Boolean logic simplification. The 
reason for this study was because the primary constraint in Boolean logic is that a Boolean variable can only 
assume one of two possible values which are “0” and “1” and this constraint is also true for variables in 
digital design. Hence the rules we learn in Boolean logic, can be applied directly to digital electronics as we 
will see in section 4.  
 
In this section we will discuss a tabular methodology used in Boolean algebra for representing the results of 
Boolean operations on Boolean variables that has a direct application in digital design. This methodology is 
referred to as a Truth Table.  
 
Let us assume that we have 2 Boolean variables “A” and “B”. We want to perform an addition operation 
using these two variables and assign the answer to a new variable “C”. Our possible results are as follows; 
 

A B A + B = C 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

 
Fig. 2.3.1 

 
The above table is referred to as a Truth Table. 

 
An operation we perform with Boolean variables is referred to as a “connective”. In the above operation our 

connective was an addition. But irrespective of how complicated a connective we use, we can see that the 
Truth Table allows us to tabulate all possible results for all possible operand values. We can even extend 
this truth table to cases where we have more than 2 input variables and more than 1 output variable.  
 
As an example, let us use a Truth table to present the result for the following connectives. Here we have 3 
input variables (A, B and C) and 2 output variables (D and E). 
 
(A + B) x C = D  
D’ = E 

A B C D E 

0 0 0 0 1 

0 0 1 0 1 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 0 1 

1 1 1 1 0 

 
Fig. 2.3.2 

 
 
Isn’t this great! As simple as “0” and “1”! Nothing too complicated! 
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2.4 – Karnaugh Maps 
 

An alternative way to draw the table in Fig 2.3.1 in the previous section is as follows; 

 
Fig 2.4.1 

 
 
In this method, representing a Boolean expression consists of a box for every line in the truth table. In Figure 
2.4.1 above, the binary values to the left side of the boxes represent the values for the variable “A”. The 
binary values above the boxes are the values for the variable “B”. And each box represents the value for the 
variable “C”, for a given combination of “A” and “B”. Such a pictorial representation of a Boolean function is 
called a Karnaugh map. 

 
So why do we need another way to represent information in a truth table? 
 
As it turns out, the Karnaugh map is an invaluable tool in simplifying Boolean expressions. But there is one 
very important rule to follow when constructing a Karnaugh map. Failure to follow this rule will make it 
useless in its role as a logic simplification tool.  
 
Unlike a truth table where input variable values are typically listed as an increasing binary sequence (such 
as 00, 01, 10, 11), the input variable values in a Karnaugh map must be ordered such that the values for 
adjacent columns vary only by a single digit. So a sequence for 2 digits in a Karnaugh map would be 
00,01,11, 10. Note how we went from “01” to “11” and not to “10”. This is because going from “01” to “10” 
requires two bits to change. This form of ordering where only a single bit changes at a time, is called a gray 
code.  

 
Let us illustrate this by translating the truth table in Figure 2.3.2 in the previous section into a Karnaugh map 
for output D. 

 
Fig 2.4.2. 

 
Now to understand the benefit of Karnaugh map in logic simplification, let us try to reverse engineer the logic 
equation that represents the output D based on Fig 2.4.2 above. To help us do that, we will group all the “1”s 
in such a way that we can eliminate the relevance of certain input variables.  
 
 
 

0 1 

1 1 

B 

A 

0 

0 

1 

1 

0 

1 

AB 

C 

0 0 0 0 

0 1 1 1 

00 01 11 10 
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In Fig 2.4.3, we have made 2 groups of 1s.  
 
In Group I, the input variable A is both 0 and 1 and hence it is not relevant in determining the value of D in 
this group. So the value of D in Group I must have B AND C turned on. Or in other words D = B X C in group 

I.  
 
Similarly in Group II the variable B is both 0 and 1 and hence it is not relevant in determining the value of D 
in this group. So the value of D in Group II must have A AND C turned on. Or in other words D = A X C in 

group 2. 
 
But we know that D is a “1” in Groups I and II. So as long as the conditions for Group I OR the conditions for 

Group II are satisfied, D will be a “1”. 
 
Hence the logic equation that represents D can be written as follow; 
 
D = (A X C) + (B X C)  
 
Or in other words… 
 
D = (A + B) X C. 
 
This matches the equation we started with in the truth table in Fig. 2.3.2.  
 
Note that when deciding on groups in a karnaugh map the following eight rules must be observed. 
 

1. Only cells with "1" must be included.  

2. A group cannot be made of diagonals.  

3. The number of cells in a group must be a power of 2.  

4. Each group should be as large as possible.  

5. Every "1" must be in at least one group.  

6. Overlapping groups is allowed.  

7. Cells in the edges wrap around.  

8. Ensure that the total number of groups is the minimum possible. 

0 

1 

AB 

C 

0 0 0 0 

0 
1 

1 1 

00 01 11 10 

Group I 
Group II 

Fig 2.4.3 – Logic simplification with Karnaugh maps 
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3.0 – Fundamental Physics 
 
Some of the earliest recorded study of matter dates back to 500 BC. Leucippus and Democritus, the early 
Greek philosophers, were among the first to suggest that the substance that formed the universe was made 
up of indivisible particles called “atoms” (Greek for indivisible) and empty spaces called “voids”. This theory 
was to counter an earlier theory by another popular Greek philosopher, Zeno, who believed that the universe 
was formed by an all encompassing and all permeating motionless mass with no empty spaces. Democritus 
argued that since our senses detected motion, empty spaces would be a prerequisite in the composition of 
the universe.  
 
The views of Leucippus and Democritus would not however win the approval of the more prominent 
philosophers of the time. Aristotle for example, was unable to accept the idea of a “void” or the idea that 
atoms could not move on their own accord. And since the views of Aristotle would eventually make their way 
into early theology, that atomic view point was perceived as heretical.  
 
By the 1500s the atomic theory made a great revival with support from influential philosophers like Pierre 
Gassendi, Robert Boyle and Isaac Newton. It was English chemist, John Dalton (1808) who first postulated 
on the modern atomic theory. John Dalton made the following five postulates; 
 

1) All of matter consists of tiny indivisible particles called atoms. 
2) All atoms of a particular element are exactly alike, but atoms of different elements are different. 
3) All atoms are unchangeable. 
4) Atoms of elements combine to form molecules of compounds. 
5) In chemical reactions, atoms are neither created nor destroyed, but are only rearranged. 

 
In 1897 English physicist J.J. Thomson proved Dalton wrong with the discovery of electrons, which could be 
extracted from atoms, thus making the atom divisible. In 1898 research by Pierre and Marie Curie led to the 
discovery of radioactivity which proved that some atoms could be changed (decayed) into other kinds of 
atoms. In 1911 the New Zealander physicist, Ernest Rutherford, contributed to our understanding of the 
nucleus of the atom. In 1922 the Danish physicist, Neils Bohr (student of Ernest Rutherford), provided an 
understanding of the patterns observed among elements of the periodic table.  
 
Subsequent to the contribution by Neils Bohr, the study of the atomic structure became less a study in 
physical modeling and more a study in mathematical modeling. In 1923 French Physicist Louis De Brogile 
observed that electrons sometimes behaved as if they were particles and at other times behaved as if they 
were waves, leading to the wave-particle duality. In 1927 German Physicist Werner Heisenberg, proposed 
the principle of uncertainty which stated that you could not determine the velocity and position of a particle 
simultaneously. Heisenberg went on to publish “The Physical Principles of Quantum Theory”. In 1930 
Austrian Physicist Erwin Schrodinger described electrons as continuous clouds, which led to “wave 
mechanics” as a mathematical model for the atom. Also in 1930, the English Engineer Paul Dirac expanded 
on Heisenburg’s publication by proposing “anti-particles”. 
 
As you can see the knowledge of the atomic theory is a continually evolving process in our time. While the 
theories that we subscribe to today reconcile with empirical evidence thus far, it may not represent the 
absolute reality of nature. Nevertheless our current level of knowledge allows us the possibility of modifying 
atomic behaviors in a controlled manner with predictable results that have a wide variety of applications. 
 
In this section, we will study the modern atomic theory and how it applies to the technologies in 
semiconductor physics and in the design of solid state electronic components. For this purpose, the physical 
models proposed by Rutherford and Bohr will prove adequate, and hence that will be the extent of our 
attempts at understanding the atomic structure. 
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3.1 – Bohr Atomic Structure 
 
The Bohr’s atomic structure is made up of subatomic particles called Protons, Electrons and Neutrons. 

These subatomic particles stay together with the help of an energy balance to form an atom. The energy 
balance is determined by the weight and electric charge associated with these subatomic particles. An 

electric charge is a fundamental property of a proton and an electron.  
 
An electron represents a fundamental unit of negative charge (-1.6 x 10-19 Coulombs). The mass of an 

electron is 9.11 x 10-31 kg.  
 
A proton represents a fundamental unit of positive charge (+1.6 x 10-19 Coulombs). The mass of a proton is 

1.6726 x 10-27 kg. This represents a weight that is about 1,836 times the weight of an electron. 
 
A neutron has no electric charge and a mass of 1.6749 x 10-27 kg, which is slightly higher than the weight of 

a proton. 
 
An atom consists of a nucleus, made up of neutrons and protons, in its centre. Electrons surround the 
nucleus and rotate around the nucleus in electron “shells” (or energy levels) that vary in shape and distance 
from the nucleus. Each shell has sub-shells. And each sub-shell can have multiple electron orbits. Any 

electron orbital can accommodate 2 electrons.  
 
The first shell is called the “K” shell. It has only 1 sub-shell called the “s” sub-shell and the “s” sub-shell only 

has 1 orbital. And hence the “K shell can accommodate a total of 2 electrons. 
 
The second shell is called the “L” shell. It has 2 sub-shells – “s” and “p”. The “p” sub-shell has 3 orbits and 

hence can accommodate a total of 6 electrons. So the total number of electrons in the 2nd shell is 8 (2 in “s” 
and 6 in “p”). 
 
The third shell is called the “M” shell. It has 3 sub-shells – “s”, “p” and “d”. The “d” sub-shell has 5 orbits and 

hence can have a total of 10 electrons. So the total number of electron in the 3rd shell is 18 (2 in “s”, 6 in “p”, 
10 in “d”). 
 
The forth shell is called the “N” shell. It has 4 sub-shells – “s”, “p”, “d” and “f”. The “f” sub-shell has 7 orbits 

and hence can have a total of 14 electrons. So the total number of electrons in the 4th shell is 32 (2 in “s”, 6 
in “p”, 10 in “d”, 14 in “f”). 
 
The fifth shell is called the “O” shell and it holds the same number of electrons as the fourth or “N” shell. 

 
The sixth shell is called the “P” shell and it does not have the “f” sub-shell and hence holds a total of 18 

electrons. 
 
The seventh shell is call the “Q” shell and it does not have the “d” and “f” sub-shells and hence holds a total 

of 8 electrons. 
 
The electron orbits represent energy levels. Electrons in the higher orbits represent a higher energy level. 
The order in which the electron orbits are filled are as follows; 
 
Ks2, Ls2, Lp6, Ms2, Mp6, Ns2, Md10, Np6, Os2, Nd10, Op6, Ps2, Nf14, Od10, Pp6, Qs2, Of14, Pd10, 
Qp6.  

 
Note that the “s” sub-shell in the “P” shell gets filled before the “f” sub-shell in the “N” shell. 
 
The atomic number of an element defines the number of protons in the nucleus of an atom. An element is 

made up of identical atoms. So the number of protons or the atomic number is a way to identify an element.  
 
The atomic weight of an element is the number of times an atom of that element, is heavier than an atom of 

hydrogen. The atomic weight of hydrogen is always 1 (Note: Hydrogen has 1 neutron, 1 proton and 1 
electron). 
 
The Mass number of an element is the sum of the protons and neutrons in the nucleus. This does not have 

to be a constant for a given element. An element can have varying number of neutrons in its nucleus. Eg. 
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Carbon 12 has 6 neutrons. Carbon 14 has 8 neutrons. But they both have 6 protons and hence they are 
both Carbon. 
 
An element is a substance made up of atoms of just one kind. There are 82 natuarally-occuring elements 

and about 31 artificially created elements. 
 
 
A molecule is the smallest particle in a substance that is formed by combining atoms of the same or 

different elements. 
 
When atoms or molecules of different elements combine in a fixed proportion, a compound is formed. Eg. 2 

atoms of Hydrogen combine with 1 atom of Oxygen to form water (H2O). 
 
An ion is any atom or group of atoms with a net positive or negative charge because it has either lost an 

electron (net positive charge) or gained an electron (net negative charge). 
 
The Valency of an element is the number of hydrogen atoms that can combine with, or displace, one atom 

of the element to form a compound. Eg. 2 atoms of hydrogen combine with 1 atom or oxygen to form water. 
So the valency of Oxygen is 2. If an element does not combine with hydrogen, then its valency is determined 
by the combining power of the element with another element whose valency is known. Valency can also be 
defined as the number of electrons that an atom donates or accepts to complete the number of electrons 
required by a shell. Some elements can exhibit variable valencies. 
 
Hydrogen and all metals have a positive valency – meaning they donate electrons to other atoms or 
molecules in a chemical reaction to form compounds. All non-metals have a negative valency – meaning 

they accept electrons from other atoms or molecules in a chemical reaction.  
 
In general when 2 atoms or molecules combine, they attempt to end up with 2 or 8 electrons in the outer 
most shell. This is achieved by sharing of electrons from the donor and receiver.  

 
Elements with increasing atomic numbers are arranged in a table called the Periodic Table. The elements 

of the periodic table are grouped according to their properties. Elements of group 1 have 1 valence electron. 
Elements in group 2 have 2 valence electrons and so on.  
 
The valence band is the outer most electron energy level or band with electrons at the absolute zero 
temperature (for our purposes assume this means a very low energy state). The electrons that occupy the 
valence band are called valence electrons and they are the ones that are instrumental in making bonds with 

other atoms or molecules by donating or accepting electrons. 
 
For conducting electricity (ie. for electrons to move away from the atom) however, the valence electrons 
have to jump to energy bands higher than the valence band by gaining energy (based on the application of 
an electric field) and thus making them free from the attraction of the protons in the nucleus. The energy 
band next to the valence band is called the conduction band.  

 
In conductors the available energy bands for conduction range from the highest energy of the valence band 

upwards and so it is easy to move electrons from the valence band into the conduction band.  
 
In insulators there is band gap that acts as a threshold preventing electrons from jumping easily from the 

valence band to the conduction band.  
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3.2 – The Semiconductor 
 
A semiconductor is much like an insulator, in that it has a band gap. However, the band gap is much 
smaller than that in an insulator. The most common semiconductors are either from group 4 of the periodic 

table (Silicon) or are compounds formed from elements on either side of group 4 such that the resultant 
compound also has a valency of 4. 
 
The reduced band gap of a semiconductor can be exploited to cause the semi-conductor to behave in a 
variety of controlled ways by adding impurities to a semi-conductor. This process of adding impurities to a 
semiconductor is referred to as doping a semi-conductor.  

 
If the impurity atoms have more valence electrons than the semiconductor atom, then an occupied band is 
created closer to the conduction band effectively reducing the band gap and allowing electrons to jump into 
the conduction band and carry electricity. This type of impurity addition is referred to as n-type doping (n for 

negative – electrons add a net negative charge).  
 
If the impurity atoms have fewer valence electrons than the semiconductor atom, then an unoccupied band 

with energy just above the valence band is created. Electrons from the valence band can easily jump into 
this band, however once they are there, they are tightly bound to impurity atoms and can no longer jump into 
the conduction band. However the movement of the electron into this band leaves a net positive charge 
(referred to as a hole) which can also carry electricity in the presence of an electric field. This type of 
impurity addition is referred to as p-type doping (p for positive – holes add a net positive charge). 

 
By sandwiching p-type and n-type semiconductors, many devices with very specific electronic properties can 
be manufactured. When people refer to Solid State electronics, they mean electronics based on 

components manufactured using such semiconductors. This is to distinguish similarly behaving devices that 
were previously made using vacuum tube technologies. 
 
N-type doping generally involves donors from group 5 of the periodic table. These atoms have five valence 

electrons. Four of these can form a bond with four of the semiconductor’s valence electrons leaving a 
weakly bound fifth electron. This electron needs very little energy to jump into the conduction band and 
become a carrier that is free to roam.  
 
P-type doping involves acceptors from group 3 of the periodic table. These atoms have 3 valence electrons. 

Note that a pure semiconductor has 4 valence electrons and is bound to 4 adjacent atoms in a lattice crystal 
formation. When a P-type impurity is introduced, the impurity atom only has 3 valence electrons. But to fit 
into the existing lattice, it will create an empty electronic state in the band gap, near the top of the valence 
band. This will make it easy for an adjacent semiconductor atom’s valence electron to jump into this energy 
level, leaving behind a net positive charge or a hole. Now the semiconductor atom representing the hole is 

short of an electron, much like what that impurity atom was previously. And this will cause another atom to 
lose an electron. The net effect is that the hole now moves freely around the crystal lattice. 
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3.3 – The Semiconductor Diode 
 
A semiconductor diode is the simplest kind of semiconductor device which allows the flow of current in 

one-direction only. The device is made by putting a p-doped semiconductor next to an n-doped 
semiconductor as shown in Fig 3.3.1 below. 
 

 
Fig 3.3.1 – P-N Junction 

 
When such a P-N Junction is made, the free electrons close to the junction in the N-Type region will be 
attracted to the free holes in the P-Type region and will merge into them. This will lead to a loss of free 
charges close the P-N Junction, leading to what is commonly referred to as the depletion region as shown 

in Fig 3.3.2 below.  
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The formation of the depletion region leads to a net negative charge in the P-Type region close to the 
junction because the holes (positive charges) have disappeared by merging with the electrons. Similarly 
there is net positive charge in N-Type region close to the junction, because the electrons in that region have 
disappeared. 
 
Once the depletion region is formed, the free electrons in the N-Type region are further repelled from the 
depletion region because of the net negative charge in the P-Type region close to the junction. Similarly, the 
free holes in the P-Type region are further repelled from the depletion region because of the net positive 
charge in the N-Type region closer to the junction. 
 
To move the holes and electrons across this junction now requires some form of extra energy. The junction 
thus acts as a barrier preventing the flow of charges across it. If an electric field is applied by placing a 
relative positive voltage at the N-Type region with respect to the P-Type region, the barrier effect will be 
further compounded because electrons will flow away from the barrier.  
 
If on the other hand, a positive voltage was applied to the P-type region with respect to the N-type region, 
we will provide the energy required for the electrons and holes to cross the barrier formed by the depletion 
region. Hence this arrangement ensures that we only allow current to flow in one direction. 
 
The application of a relative positive voltage on the P-type region is referred to as applying a Forward bias, 
while applying a relative positive voltage on the N-type region is referred to as applying a Reverse bias.  

 
When a forward bias is applied, the depletion region can be visualized as effectively reducing in width in 
proportion to the value of the forward bias until such a point when a depletion region is non-existent. Any 
increase in forward bias at that point will no longer cause an increase in current flow. 
 
When a reverse bias is applied, the depletion region can be visualized as effectively increasing in width in 
proportion to the value of the reverse bias.  
 
Fig. 3.3.3 below shows a typical graph of the voltage applied, versus current flow in the forward and reverse 
directions.  
 
 

 
 
 
Note how in the reverse direction, the diode “breaks down” and lets the flow of current after a certain point. 
This is referred to as the Zener effect and the voltage at which the breakdown happens is known as the 
Zener voltage. A diode that exploits this behavior is called a Zener diode. The reason for this breakdown or 

avalanche effect is that as the electric field increases, the speed of the electron flow increases. And when 
these high energy electrons collide with the atoms in the lattice, they can generate holes in the N-type region 
that can actually flow through the depletion region.  
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Fig. 3.3.3 – Bias Voltage vs. Current 
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3.4 – The Semiconductor Transistor 
 
The simplest way to view a Transistor is as a variable resistor. A transistor is a three terminal device and the 
resistance between two of the three terminals can be controlled either by the current or voltage at the third 
terminal. The variation of resistance, or the behavior of a transistor, can be categorized into three distinct 
states or regions. In the initial state, referred to as the cut-off state, the resistance between the two 
terminals of a transistor is very high and hence in this state the transistor behaves as a switch that is 
turned off. In the second state, referred to as the linear state, the decrease in resistance is linearly 

proportional to the current or voltage applied to the controlling terminal and hence this state is ideal for 
controlled signal amplification. And the third state, referred to as the saturation state, the amount of 

current is no longer impacted by the current or voltage in the controlling terminal. In this state the transistor 
can be viewed as a switch that is turned on. 

 
A transistor can be used for mainly two purposes. First it can be used as an electrical signal amplifier and 
secondly it can be used as switch. In Digital Electronics the use of the transistor as a switch is the more 

common application. 
 
There are two common types of transistors – Bipolar Junction Transistors (BJTs) and the Field Effect 
Transistors (FETs).  

 
Bipolar Junction Transistors (BJTs) 

 
The BJTs can be viewed as two PN Junction diodes placed back to back to form a NPN or a PNP BJT. Fig 

3.4.1 below shows an NPN BJT transistor. 
 

 
 
The three terminals in a BJT are commonly referred to as the Base, Collector and Emitter. The reason for 
these names will become more evident as we understand the physics of its operation. When no electric field 
is applied to the terminals, there are two depletion regions in this device preventing the flow of an electric 
current through it.  
 

Fig. 3.4.1 – NPN BJT 
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However if the Base-Emitter junction is forward biased by applying a positive electric voltage at the Base 
relative to the Emitter, then electrons from the Emitter will flow into the Base and holes from the Base will 
flow into the Emitter. If the Base-Collector junction is reverse biased by applying a positive voltage to the 
collector relative to the Base, then the electrons that flow into the Base from the Emitter, can now flow into 
the collector. This is the normal configuration of a BJT transistor when used for signal amplification. 

A small current flow between the Base and the Emitter will can control a large current flow between the 
Emitter and the Collector.  
 
Note that if there was no current flow between the Base and the Emitter, there will be no electrons available 
to cross the reverse biased junction between the Base and the Collector. So if the Base-Emitter is reverse 
biased, the transistor will behave like a switch that is turned off. This configuration is also called the 
cut-off region 

 
If both the Base-Emitter and Base-Collector are forward biased, then the flow of current between the Emitter 
and the Collector is uninhibited and the transistor will behave like a switch that is turned on. The 
configuration is also called the saturated region. 

 
The bulk of the electrons that flow from the Emitter to the Base will end up going into the Collector instead of 
merging with holes in the Base because the Base is often much thinner than the Emitter or the Collector. 
Note that in BJTs, it is the current flowing through the base that controls the current flowing through the 
Collector. 
 
Fig 3.4.2 below shows a basic NPN BJT circuit along with the characteristic current curve through the 
Collector for varying values of voltages between the Collector and the Emitter. Note that until the Vce hits  
0.7V, the Base-Collection junction is forward biased and hence the transistor behaves like a closed switch. 
Beyond that it functions as a linear amplifier, where the Collector current (IC) is a constant multiplied by the 
Base current (IB). If we keep increasing Vce, we eventually reach the Zener voltage and cause the transistor 
to break down. 
 
 

 
Note that in a BJT, the current is carried by both the holes and the electrons. In the case of a NPN BJT, the 
electrons are the majority carriers and holes are the minority carriers, since the Base (P) is very thin 

compared to the Emitter and Collector. 
 

Fig 3.4.2 – BJT Current Characteristics 
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Field Effect Transistors (FETs) 

 
Unlike a BJT, a Field Effect Transistor controls the current flow by the application of a voltage, which in turn 
creates an electric field, at the controlling terminal of the transistor. FETs come in different varieties. The 
Junction FET or JFET and the Metal Oxide Semiconductor FET or MOSFET are the most common types of 

FETs. In the following sections we will study the workings of each of these FET devices. 
 
JFETs 

 
Fig 3.4.3 below shows the layout of an N-channel JFET. Note that the terminals for a FET are named 
differently from that for a BJT. What used to be the Base is called the Gate, the Emitter is called the Source 
and the Collector is called the Drain. Also unlike a BJT, in the FET the current is carried only by the majority 

carriers. In an N-channel FET, the majority carriers will be electrons. In a P-channel FET, the majority 
carriers will be holes. The Gate only serves as a means to constrain the channel with the application of an 
electric field that will cause the depletion layer between the PN junction to be increased, thus reducing the 
channel width.  
 
 

 
For an N-Channel FET a negative Gate to Source voltage will increase the depletion region and close the 
channel as this voltage is increased to a value called the Pinch-off voltage. For a P-channel FET a positive 

Gate to Source voltage will increase the depletion region and close the channel as this voltage is increased 
to the pinch-off value. 
 
Fig 3.4.4 below show the current characteristics between the Source and the Drain for an N-Channel JFET, 
as a function of the voltage between the Source and the Drain for varying values of the voltage between the 
Gate and the Source. 
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Fig 3.4.3 – N-Channel JFET 
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For its application as a switch, we can turn off an N-channel JFET by applying a -3V to the Gate with respect 
to the Source. And we can turn it on by leaving the Gate and Source without a bias voltage.  
 
Note that the behavior of a JFET to the left of the dotted line is much like any conductor that obeys ohm’s 
law. But to the right of the dotted line the behavior of the JFET reaches a current saturation and no longer 
responds to increased Vds. In this region the JFET has applications as a voltage controlled current source. 
 
MOSFETs 
 
Unlike a JFET where the Gate is actually a P or N type semiconductor, the Gate of a MOSFET is a metal 
that is insulated from the semiconductor substrate with the help of an oxide and hence the name Metal-
Oxide-Semiconductor. Fig 3.4.5 illustrates the construction of a MOSFET. 
 
 

 
Note that in a MOSFET the channel is created by applying a voltage at the Gate. Prior to the application of 
this electric field there is no channel in a MOSFET transistor. The Source and Drain are wells of N or P type 
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Fig 3.4.4 –  N-Channel JFET Current Characteristics 
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doped material and the rest of the substrate is of the opposite doping. In the case of an N-type Source and 
Drain wells (N-MOS), as shown in Fig 3.4.5, a positive voltage at the gate will cause the holes in the P-type 
substrate to be repelled and electrons from the Source and Drain well will be able to move freely in a thin 
layer close to the gate. This is how a channel in created in a MOSFET. In the case of a P-MOS, a negative 
voltage will have to be applied at the Gate to create a channel between the Source and the Drain. 
 
Fig 3.4.6 below shows the current characteristics for an N-MOSFET transistor.  
 
 

 
 
For its application as a switch, note that you need a positive voltage at the gate to turn a N-MOS transistor 
on. Similarly you need a corresponding negative voltage at the gate to turn a P-MOS transistor on. The 
actual voltage values required to turn these transistors on and off are functions of the silicon construction. 
But the fact that the inverse gate voltage requirement for a P-MOS versus an N-MOS is exploited in CMOS 
transistors discussed in the next chapter. 
 
Fig 3.4.7 shows the commonly used electrical notations for N-MOS and P-MOS transistors respectively. 
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3.5 – Gate Implementation using CMOS 
 
Complimentary MOS or CMOS is a configuration that uses NMOS and PMOS technologies in concert to 

realize common logic gates.   
 
A logic gate is an electrical circuit that allows the fundamental operations in Boolean Algebra that we 
discussed in section 2. The logic gates that we will cover in this section are the NOT Gate, 2-Input NAND 
Gate, 2-Input NOR Gate, the Transmitter and the D-Flip-Flop. With these five fundamental gates, we have 
all the tools necessary to build very complicated Digital Circuits. 
 
The primary merit of the CMOS technology relates to power consumption. When NMOS or PMOS are not 
used in concert, an open gate will allow current flow and thus lead to power consumption (Ohm’s law - 
Power = I2R). But if we use NMOS and PMOS in series such that when one gate is open the other is closed 
we can avoid the flow of current in steady state and hence conserve power. This will become clearer as we 
study each of the building block gates below. 
 
 
NOT Gate 

 
Fig 3.5.1 below shows how a PMOS and an NMOS can be used in series to implement a NOT gate 
(Inverter).  
 

 
Since we know that PMOS and NMOS are turned on by inverse signals, in the above layout if the “Input” 
value is high (usually 5V), then the NMOS transistor will be ON while the PMOS will be OFF. And hence the 
Output will be OFF (equal to ground since the Source of the NMOS is tied to ground and the NMOS is a 
closed circuit). 
 
Similarly if the “Input” value is low (usually 0V), then the NMOS transistor will be OFF while the PMOS will 
be ON. And hence the “Output” will be ON (equal to Vdd because PMOS is a closed circuit and its Drain is 
tied high). 
 

Fig 3.5.1 – CMOS NOT Gate implementation 
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The beauty of this setup is that power is only consumed when the Input value changes state. No power is 
required to maintain a state. This is because there is no current flow while maintaining a state. This is not 
the case if NMOS or PMOS were used in a non-complimentary fashion.  
 
Note that in this design a NOT gate consumes 2 transistors.  
 
2-Input NAND Gate 

 
Fig 3.5.2 below shows the implementation of a NAND gate (AND followed by a NOT).  
 

 
To confirm the truth table above let us study the circuit. For the “Output” to be low, both the NMOS gates 
need to be open. This can only happen when both Input A and Input B are high. If either Input A or Input B is 
low, then one of the PMOS transistors will be open and the output will be high. 
 
Again observe that there is no current flow while maintaining a state.  
 
Note that in this design a NAND gate consumes 4 transistors. In general when design engineers refer to the 
gate count in an integrated circuit, they are talking about the number of NAND gate equivalents. Thus to get 
a measure of the number transistors for a given gate count, you can get a rough estimate by multiplying the 
gate count by 4. 
 
 
 
2-Input NOR Gate 

 
Fig 3.5.3 below shows the implementation of a NOR gate (OR followed by a NOT).  
 

Fig 3.5.2 – CMOS NAND Gate implementation 
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To confirm the truth table above let us study the circuit. For the “Output” to be high, both the PMOS gates 
need to be open. This can only happen when both Input A and Input B are low. If either Input A or Input B is 
high, then one of the NMOS transistors will be open and the output will be low. 
 
Again observe that there is no current flow while maintaining a state.  
 
 
Transmission Gate 

 
Fig 3.5.4 below shows the implementation of a Transmission gate (a gate that allows a signal to flow through 
on a rising clock edge). The application for this gate will become clear when we discuss the D-Flip-Flop. But 
for now assume that it does nothing more than transmit the input signal to the output when the clock is high.  
 
The concept of a clock is what distinguishes combinational logic design from sequential logic design. 

This will be discussed in section 4. For now, it is sufficient to understand that a clock is a periodic 
rectangular pulse that is generated using a crystal oscillator.  

 
Circuits that change output state only on a rising or a falling edge of a clock signal are referred to as 
synchronous circuits. Circuits that change output state as soon as the input signal changes, are referred to 
as Asynchronous circuits. The significance of Synchronous and Asynchronous designs will be covered in 

Section 4. 
 
 

Fig 3.5.3 – CMOS NOR Gate implementation 
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D-Flip-Flop 

 
Fig 3.5.5 below shows the implementation of a D-Flip-Flop.  
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Fig 3.5.5 – CMOS D-Flip Flop implementation 
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A D-Flip-Flop is a very useful gate that allows you to “lock” or “latch” your signal for a period of time 

(generally the period of the clock). Thus even if your input signal changes during the clock period, the output 
remains unchanged until the clock goes from a low to a high. This is very useful in avoiding “glitches” that 

can lead to very unstable circuits especially when the outputs drive heavy loads. These concepts will 
become much clearer in Section 4. 
 
To understand how the D-Flip-Flop allows for its memory capability, let use study the circuit in Fig. 3.5.5. 
When the clock is low, gate 1 will transmit and gate 2 and 3 will block signals. Hence the input appears at 
gates 2 and 3 but does not get transmitted by them. When the clock goes high, gate 1 will cease transmitting 
and gates 2 and 3 will begin transmitting. The input signal is “remembered” by the loop formed through gate 
2. This memorized value passes through gate 3 and appears at the input of gate 4. When the clock goes low 
again, the output of the Flip-Flop is “remembered” by the loop through the now transmitting gate 4. Thus the 
signal appears at the output delayed. 
 
In the truth table in Fig 3.5.5, I have indicated that the Output is “P” when the clock is low. This is to account 
for the Flip-Flop maintaining whatever was the previous value that was latched when the clock went from a 
low to a high.   
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4.0 – Concepts in Digital Design 

In sections 1, 2, and 3, we discussed the prerequisite sciences that are employed in digital circuits. In this 
section, we will discuss the engineering concepts used in the realization of logic designs.  
 
First we will discuss the most basic asynchronous combinational circuits and reveal their applications and 
limitations. This will lead us to synchronous designs. We will then discuss “state aware” or sequential circuits 
and the triggers that can be used to provide sequential behavior. In particular we will discuss the most 
common from of triggers - event and clock triggers. 
 
To reinforce the concepts that we discuss, we will use real-world applications as examples for each type of 
design technique. 
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4.1 – Asynchronous Combinational Logic Design 

 
Almost all user interfaces to digital circuits use some form of a 7-Segment Liquid Crystal Display (LCD) to 
display numbers and characters. The most common application for this is in digital watches. Here a Binary-
Coded-Decimal (BCD) value is used to light appropriated LCD elements in the 7-Segment display. We will 
use the 7-Segment display as an example to discuss combinational logic circuits. 
 
Fig 4.1.1 below shows a 7-Segment LCD display. The 7 segments are labeled A through G. 
 

 
 
A Binary Coded Decimal (BCD) is a 4 bit value that is used to represent decimal numbers. With 4 bits you 
can represent 24 or 16 unique values. But as we already know, a decimal value (base 10) can only have 10 
unique values. And so 6 out of the 16 possible values are never used in the BCD representation. 
 
Let us start our design of the BCD-To-7-Segment display by first creating a Truth Table. We will call our 4 
input bits I3, I2, I1 and I0, where I0 is the least significant bit and I3 is the most significant bit. Our 7 outputs 
will be A,B,C,D,E,F and G. 
 
When I3=0, I2=0, I1=0 and I0=0, we want to display a “0”. To do this we need all segments to be lit up 
except G. This is shown in the first row of the truth table in Fig 4.1.2.  
 
 

I3 I2 I1 I0 A B C D E F G 

0 0 0 0 1 1 1 1 1 1 0 

0 0 0 1 0 1 1 0 0 0 0 

0 0 1 0 1 1 0 1 1 0 1 

0 0 1 1 1 1 1 1 0 0 1 

0 1 0 0 0 1 1 0 0 1 1 

0 1 0 1 1 0 1 1 0 1 1 

0 1 1 0 1 0 1 1 1 1 1 

0 1 1 1 1 1 1 0 0 0 0 

1 0 0 0 1 1 1 1 1 1 1 

1 0 0 1 1 1 1 1 0 1 1 

Fig 4.1.2 – BCD to 7-Segment Display Truth Table 

 
Similarly when I3=0, I2=0, I1=0 and I0=1, we want to display a “1”. To do this we need to light up segments 
B and C and turn off all other segments. This is shown in the second row of the truth table in Fig 4.1.2.  

A 

B 

C 

D 

E 

F 

G 

Fig 4.1.1 – 7– Segment LCD Display 
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If you go through this exercise for the decimal numbers 1 through 9, you should come up with the table in 
Fig 4.1.2. Technically speaking, you should also account for the hex numbers A through F when using 4 bits 
for inputs. However for the illustrative purposes here, we will ignore those states. Ignoring those states will 
help reduce gate count in our design. But it can prove to be a nightmare when testing the final circuit. 
 
Now let us use a Karnaugh map to design a circuit with 4 inputs and 1 output. The 4 inputs will correspond 
to our 4 BCD bits (I3, I2, I1, I0). And the 1 output will correspond to LCD segment A. 
 
From the truth table in Fig 4.1.2, we know that A is “0” in the following cases; 
I3, I2, I1, I0 = 0001 and 0100  
In all other cases that we care about A is “1”. 
 
What about the cases we don’t care about? Note that in the truth table we have not listed any input values 
greater than 1001. These include 1010, 1011, 1100, 1101, 1110 and 1111. For all these values, we will put 
an “X” to indicate that we don’t care if these input values correspond to a “0” or a “1”. 
 
Fig 4.1.3 below is a Karnaugh map that shows the values for A for all possible values of I3, I2, I1 and I0. 
 
 

 
 
 
Notice that we have managed to get 4 groups of 1’s. To get the four groups, we have assumed that our 
“don’t care” (X) values can as well be a “1”. This is an example of using “don’t care” values to ease the 
complexity of a circuit and hence reduce the number of gates required to build a circuit. 
 
In Group I, the only input value of relevance is I1 and it has to be a “1” 
In Group 2, the only input value of relevance is I3 and it has to be a “1” 
In Group 3, the only input values of relevance are I2 and I0 and both have to be a “1” 
In Group 4, the only input values of relevance are I2 and I0 and both have to be a “0” 
 
So we can summarize our logic as follows; 

I1I0 

Group I 

00 

01 

I3I2 

1 0 1 1 

0 1 1 1 

00 01 11 
10 

Group II 

Fig 4.1.3 – Logic Design with Karnaugh maps 

11 

10 

X X 

X X 1 1 

X X 

Group III Group IV 
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A = I1 + I3 + (I2 X I0) + (I2-NOT X I0-NOT) 
 
Fig 4.1.4 shows a logic implementation for the above equation using NOT, AND and NOR gates.  
 

 
 
 
As an exercise you can now follow the same technique above and design circuits for the remaining 6 
segments (B through G) in the 7-segment LCD display. 
 
The circuit we have just designed is a combination of NOT, AND and OR gates. As we change the input 

values for I3, I2, I1 and I0, the value of the output A will change as quickly as the gates will allow the 
changes to occur. There is nothing in the circuit that attempts to synchronize the output with a notification 
that the changes being made to the input are complete. Such a circuit is referred to as an asynchronous 
combinational logic circuit. 

 
In a combinational circuit, if the input lines don’t change all at the same time or if the delay in the different 
paths from the input to the output are different, then we can expect some jitter and glitches in the value of A, 
until the input lines settle down. 
 
To fully appreciate the problem with this jitter in the output line, let us consider an application for our 7-
segment display in a sports stadium where the referee changes the input values based on the current game 
score. Even if our referee is very good with binary numbers, it is not humanly possible to flick the 4 switches 
all at once to the values that it ought to represent. What this means is that as the referee is changing the 
score, the 7-segment display will show invalid score values. This can be quiet alarming and unacceptable to 
the devoted fans at the stadium!  
 
If output “A” was an input that drove a motor in a saw mill, the implications of the glitches in the value of “A” 
could have even more serious consequences. Imagine an electric saw going on when you are not expecting 
it to! 
 
To account for these problems, most digital designs use some form of synchronization technique to ensure 
that the output values are only changed when it is safe to do so. We will explore one such technique in the 
next section. 
 
 

I3 I2 I1 I0 

A 

Fig 4.1.4 – Asynchronous Logic implementation  
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4.2 – Synchronous Combinational Logic Design 
 
Now that we recognize the limitations of the asynchronous circuit in Fig 4.1.4, let us try and enhance the 
circuit such that the output only changes when we want it to reflect the current input values, as opposed to 
changing the output as quickly as the input values change. To do this we will use the D-FlipFlop that we 
developed in section 3.5.  
 
Fig 4.2.1 is a variation of the circuit in Fig 4.1.4 that latches the output A into a D-FlipFlop. Based on our 
study of the D-FlipFlop previously, we know that the output of the flip flop will only change on a rising edge 
on the clock line.  
 
 

 
 
In our new design, we will use our clock line as the synchronous control line. After we change the input 
values to our satisfaction, we will need to toggle the synchronous control line to ensure that our output 
reflects the changes we made to our input lines. 
 
The change required to make an asynchronous circuit to become a synchronous circuit is fairly minimal, 
although it increases the gate count in a design. But the payoffs of a synchronous design are substantial. 
The instability issues associated with asynchronous designs are seldom worth the savings in gate count.  
 
 
 

I3 I2 I1 I0 

A 

Fig 4.2.1 – Synchronous Logic implementation  

D-

FlipFlop 

Synchronous Control Line 
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4.3 – Asynchronous Sequential Logic Design 
 
The most common application for a logic circuit involves the implementation of a state diagram. A state 

diagram is simply a set of nodes, each defining a unique state. The lines joining the nodes indicate the 
possible paths and the required triggers to move from one state into another. 
 
The design of a logic circuit is essentially an exercise in implementing the states and state transition rules 

defined by a state diagram with the help of logic gates. To maintain a state we need to implement some form 
of a memory circuit, much like the D-FlipFlop we discussed earlier. And to transition from one state into 
another, we need to monitor the triggers and our current state and use logic gates to change the outputs. 
 
The combinational circuits discussed thus far can be viewed as a special case logic circuit where a state 

transition is only dependent on the input triggers but not on the current state. Logic circuits that are 
dependent on both the input triggers and on the current state are known as sequential circuits.  

 
To study sequential circuits, we will implement a very fundamental building block in digital design known as 
a counter. Fig 4.3.1 shows a state diagram for a 3-bit counter. With 3 bits, we can have 23 or 8 unique 

states. 

 
 
The arrows in the state diagram indicate a trigger. For the purpose of this illustration, we will assume that a 
clock (a rectangular pulse from a crystal oscillator) is our trigger. So when we get a rising edge on the clock 
and if our current state is “6” then we will move to state “5”. Similarly if we are currently in state “0” and we 
get a rising edge on the clock, then we roll back to state “7”. 
 
 

 
 

7 6 5 4 

3 2 1 0 

Fig 4.3.1 – State diagram for a 3-bit Counter 

Fig 4.3.2 – 3 Bit Asynchronous Counter 
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Fig. 4.3.2 shows a very simple logic realization for the state diagram in Fig. 4.3.1 using the D-FlipFlops we 
studied earlier. To understand its operation, recall that the D-FlipFlop provided an output line as well as a 
line with the inverse of the output. In the above design we use the inverse output as the input to each of the 
three Flip-Flops. The least significant Flip-Flop gets its trigger from a clock signal. The other two Flip-Flops 
get their clocks from the inverse output. In addition, our D-Flip-Flop has a Reset line so that we can change 
the output of all three Flip-Flops to “0” by toggling the Reset line. Note that when the output is “0” after a 
Reset, the inverse of the output will be a “1”. 
 
Fig 4.3.3 shows a timing diagram with input clock and the values for C0, C1, and C2 subsequent to a Reset 
toggle. Note how C0, C1, and C2 start as a “1” after a Reset. Then C0 toggles with every rising edge of the 
Clock. C1 toggles with every rising edge of C0. C2 toggles with every rising edge of C1. 
 

 
 
Although the circuit in Fig 4.3.2 realizes the state diagram in Fig 4.3.1, it must be noted that the circuit is an 
asynchronous circuit in that the values of C0, C1 and C2 are attempting to change as quickly as possible. 
This will mean that there will be numerous glitches in these lines before settling into each state. Unless we 
latch the outputs at C0, C1 and C2 before passing it to other parts of the system, this design can generate 
unacceptable instability. 
 
A common application for a counter like the one above is as a frequency divider. Notice that by tapping line 
C2 we effectively get a clock whose frequency is 8 times less than the original clock frequency.  
 
 
 
 

Clock 

1 0 1 0 1 0 1 0 1 0 

C0 

1 C1 1 0 0 1 1 0 0 1 1 

C2 1 1 1 1 0 0 0 0 1 1 

Fig. 4.3.3 – Timing Diagram for 3-bit Counter 
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4.4 – Synchronous Sequential Logic Design 

 
In the previous section we acknowledged that our counter design was asynchronous. One of the main flaws 
of the design is that the “clock” used by each flip-flop is different. The first flip-flop uses the system clock as 
its trigger, the second flip-flop used the output of the first flip-flop as its clock and the third flip-flop uses the 
output of the second flip-flop as its clock. This scheme of using multiple clocks can create unanticipated 
glitches, due to the cumulative delays in receiving clock signals, and can make a system very unstable. One 
option we considered to improve upon this behavior was to latch the output of the counter before passing it 
to the rest of the system. This is not the best option however. Ideally a design engineer would like every 
related component to share the same clock. This helps ensure that state transition happens at the same 
time on all related “state aware” components. 
 
Fig 4.4.1 shows an improved synchronous design that achieves this.  
 
 
 

 
As an exercise, draw a timing diagram showing the state transitions for C0, C1 and C2. Assume that after a 
Reset, C0, C1 and C2 are set to “0”. Also assume that the “Clock Enable” line is set to “1”.  
 
Note that if an “Enable” line is enabled when it is set to “1”, it is referred to as an “Active High” enable line. If 
it were in enabled when it is set to “0”, it is referred to as an “Active Low” enable line. 

Fig 4.4.1 – 3-Bit Synchronous Counter 

Reset 

Clock 

D-

FF 

D-

FF 

D-

FF 

Clock 

Enable 

C0 

C1 

C2 

Carry 



Version 1.1 43 

5.0 – Conclusion 

  

It is hoped that the topics covered in this module has equipped the student with an adequate background in 
the fundamental sciences and digital design concepts. In the next module in this series we will build upon 
this knowledge by addressing the non-ideal behavior of semi-conductor devices in real-world applications 
and how the design considerations that were discussed in this module need to be adapted to physical 
realities and limitations of a semiconductor die. 


