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Prerequisites  

 Application Specific Integrated Circuit Design (ALS notes in Hardware Engineering) 
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Preface  

Prior modules in the Hardware Engineering series, discussed the physics of semiconductors and the design 
of digital modules for specific applications. Through these modules the student has gained an appreciation 
for the complexity, cost, and other time and effort related constraints in designing application specific 
circuitry.  
 
This background naturally leads us to the concept of a “General Purpose Processor”. Such a processor is 
designed to load instructions from memory and execute them as opposed to being hard-wired to perform 

one and only one function.  The instructions in memory can be altered at will, without any need to change 
the underlying hardware and thus allowing one to completely change the application for the processor by 
changing the instruction bits stored in memory. 
 
I start this module by discussing the layout of the circuit board for a modern general purpose computer (also 
known as the motherboard). A general purpose computer is comprised of a general purpose processor 
(also known as the microprocessor or Central Processing Unit - CPU) and peripheral modules that are 

designed to work in concert toward storing, loading and executing instructions in memory.  
 
This will be followed by a discussion on each of the modules on the motherboard from a functional 
perspective. The student is encouraged to think about how these individual modules may be implemented in 
hardware, based on the prior exposure to digital design. 
 
Finally I will conclude by briefly introducing the Computer Operating System by discussing the purpose 

that it serves and some of its more common components. 
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1.0 – Computer System Fundamentals 

At the heart of every computer is a Central Processing Unit, also known as the CPU. It is responsible for 
fetching instructions from memory and executing them. These instructions are invariably mathematical 

operations on one or more pieces of data. Whether a computer is used to solve a complex mathematical 
problem such as mapping the trajectory of a rocket that needs to go from the earth to the moon, or for a 
more mundane operation like allowing me to write this document, the instructions that need to be executed 
by the CPU are operations in logic that are implemented as a sequence of mathematical instructions.  

A computer programmer translates a real-world problem into set of logical operations and then uses a tool 
(known as a compiler or assembler) to convert these logical operations into mathematical instructions that 

a CPU can execute. Note that the compiler/assembler are themselves a set of mathematical instructions that 
allow the CPU to translate logical statements into mathematical instructions.  

Once an application is written (real-world problem translated into logical statements and then converted to 

mathematical instructions), the application is stored in some form of memory. When the CPU is asked to 
execute this application, it has to go to the location in memory where the application is stored and then fetch 
each mathematical instruction in the application and execute them in sequence until it completes the last 
instruction in the application. 

In this section, we will study in some detail the various subsystems that make up a computer.  
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1.1 – General Purpose Mother-Board  
 
Fig 1.1.1 shows a generic layout for a modern general purpose motherboard. We have a Central 
Processing Unit (CPU) with direct access to a Memory Hub. For historical reasons the memry hub is also 

known as the NorthBridge. The Memory Hub has three other direct links.  
 

 The first link is to a Memory Bus that hooks the memory hub to a bank of Random Access 
Memory (RAM).  

 

 The second is to an Accelerated Graphics Port Bus that hooks the memory hub to an 
Accelerated Graphics Port (AGP). The AGP serves as a fast visual interface into the computer.  

 

 The third connection into the Memory Hub is yet another hub called the Input/Output Hub or I/O 
Hub. For historical reasons, the I/O hub is also known as the SouthBridge. The I/O Hub hosts all 

the other input and output interfaces into the computer.  
 
The Universal Serial Bus (USB) is the modern way to interface external peripherals onto the motherboard. 

It goes through the I/O Hub to access the rest of the system.  
 
Similarly the Peripheral Component Interconnect (PCI) bus is yet another way to interface external 

peripherals onto the motherboard. It also goes through the I/O Hub to access the rest of the system. 
 

 
 

 

Fig 1.1.1: General Purpose Motherboard 
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Yet another common I/O interface that is attached to the I/O hub is the AT Attachement (ATA). AT 

identifies a storage part used in the original IBM Personal Computer. This interface falls in a category known 
as mass storage devices because it allows storing large amounts of data. 

 
The peripherals attached to the I/O hub generally fall under three categories – Non-Plug-&-Play, Plug-&-
Play and Hot-Swapping.  

 

 Non-Plug-&-Play refers to peripherals that needs to be setup (using  switches) to specify various 
settings before they can be accessed over the I/O hub (eg. ATA bus). 

 

 Plug-&-Play refers to peripherals that can be simply plugged into the bus and powered up (eg. PCI 
bus). 

 

 Hot-Swapping refers to peripherals that can be plugged in while the computer system is already 
powered up (eg. USB bus).  

 
A key thing to note in this layout is that data can flow from one peripheral to another peripheral over either of 
the hubs without dependency on any other component including the CPU. For example it is common to plug 
in a USB memory device on the USB bus and transfer data to the RAM directly. While this is happening the 
CPU is free to continue processing unrelated instructions. This paradigm is commonly referred to as Direct 
Memory Access (DMA).  

 
In the following sections we will study each of the modules in Fig 1.1.1 from a functional perspective. We will 
not cover details on the bus interfaces as these are fairly intricate and are covered by interface standards 
that are publicly available (on the internet) so that peripheral manufacturers can provide standard and 
compatible interfaces to motherboard manufacturers.  
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1.2 – The CPU 
 

Fig 1.2.1 shows a block diagram of the internal workings of the Central Processing Unit (CPU). 
Fundamentally the CPU is responsible for fetching instructions from memory and executing them.  

The task of executing instructions is done by the Arithmetic and Logic Unit (ALU). The ALU relies on very 

fast memory that is physically resident inside the CPU for input and output to the ALU. These fast memory 
modules are referred to as Registers. The ALU performs very simple arithmetic and logical operations on 

data in the registers such as addition, subtraction, multiplication, division, bit-shifting, bit-AND, bit-OR, bit-
exclusive-OR etc. 

The Memory interface is responsible for interfacing the CPU to the memory bus on the mother board. The 
Fetch module will transfer instructions from memory to the registers in the CPU with the aid of the memory 
interface and the decoding modules. 

In most cases, the fetch module can continue to fetch the next instruction from memory while the CPU is 
executing the previously fetched instruction. This paradigm is referred to as pipelining and it is a means of 

increasing the efficiency (speed of execution) of the CPU. The drawback to pipelining is that, if the execution 
of an instruction requires a jump to a location other than the next instruction in sequence, then the pipeline 
needs to be flushed causing wasted clock cycles in the ALU while the fetch module picks instructions from 
the new location. 

 

Fig 1.2.1: CPU Architecture 
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Often times, recently executed instructions or data will be needed again. The L1-Cache is fast memory 

located in the CPU where this information is preserved so as to avoid unnecessary delays by having to go 
back to external memory over the memory bus.  

The L2-Cache serves a similar purpose to the L1-Cache but is not physically located inside the CPU and 

hence is slower to access than the L1-cache, but is still faster than accessing the memory. 

Peripherals that need time critical access to the CPU, will be wired into an “Interrupt Controller” on the 

motherboard. The interrupt controller can force the CPU to stop whatever it is currently doing, save its 
current state and attend to an urgent request from a peripheral. Once the urgent request is serviced, the 
CPU restores its previously saved state and continues from where it left off, prior to the interrupt. 
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1.3 – Primary Memory Subsystem  
 

In computer parlance, when people refer to the memory subsystem, they are usually referring to the primary 
memory that is directly tied to the CPU over the memory bus and hub.  

 
This primary storage memory is different from the registers and the CPU cache that we discussed in the 
previous section. The CPU has to go over the memory bus to get to the primary memory and hence 

does not have direct access to it.  
 
The primary storage memory is also different from the larger secondary storage memory modules that are 
linked to the CPU over the I/O Hub, in that it is byte addressable (can access individual bytes) whereas 
secondary storage modules are usually block addressable (a block is a group of bytes). 

 
The primary memory is usually slower than the registers and the cache memory, but larger in the 
amount of data that it can store. In general the larger capacity memory types are slower in terms of 

access times. 
 
The primary memory on a motherboard is generally of two types – Read Only Memory (ROM) or Random 
Access Memory (RAM). ROM memory is usually written to only once and then available for reading at 

anytime after that. RAM memory can be read from or written to at anytime.  
 
Both ROM and RAM memory can generally be addressed randomly at any location within the memory 

without having to read sequentially from the beginning of the memory to the address where access is 
required. 
 
ROM is generally a form of non-volatile memory, meaning it does not require power to maintain its 
contents. The most popular form of ROM modules is the Erasable-Programmable-Read-Only-Memory or 
EPROMs. These contents of these modules can be erased and reprogrammed multiple times using 

specialized hardware. Once programmed, the CPU can only read its contents but cannot change (write to) it. 
 
The most prevalent form of RAM is Dynamic RAM or DRAM. This is a high density form of memory where a 

bit of information is stored with 1 transistor and 1 capacitor. But the drawback to this type of RAM is that it 
needs to be periodically “refreshed” (data recharged to counteract drain) in addition to having a constant 
power supply.  
 
Static RAM or SRAM is a less dense form of memory but does not have the refresh constraint imposed by 
DRAM. Nevertheless, SRAM is also a form of volatile memory (like DRAM) and hence requires a constant 

power supply. 
 
SDRAM is a variation of DRAM that has a synchronous interface (tied to a clock edge for latching). By 

default, DRAM uses an asynchronous interface (change occurs as soon as physically possible). 
 
There is another category of memory modules referred to as Flash memory. Generally this category will fall 

under secondary memory, but I will make mention of it this section on primary memory, because there is a 
particular variety of flash memory that is byte addressable and is gaining popularity in embedded systems.  
 
Unlike RAM, flash memory offers non-volatile storage. Flash, in a way, is the evolution of EPROMs. There 
are two main types of flash memory – NOR-Flash and NAND-Flash. The difference between NOR and 
NAND flash is that NOR is byte accessible although it takes longer to write to NOR.  This characteristic 

makes NOR flash useful for storing application code, since the CPU will only fetch (read) code and not have 
to change it (write to that location). When used in this fashion, the code is said to be executed-in-place or 
XIP, in that it does not have to be loaded into RAM before the CPU can fetch instructions from it. 

 
M-Systems have come up with a combination of NOR and NAND such that a boot section appears like NOR 
and the rest of the flash appears like NAND. This storage module is referred to as Disk-On-Chip. 

 
Fig 1.3.1 shows the physical layout of primary memory. The memory bus is made up of “Address lines”, 
“Data lines” and “Control lines”. When the CPU wants to access memory at a particular address, it puts the 

address value on the address bus and tells the Memory module that it is interested in the data at that 
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location with the help of the control lines. In response to the request by the CPU, the memory module will set 
the Data lines to reflect the value of the data at that address location and use the control lines to indicate 
that it has completed the operation. At this point, the CPU will read the Data lines and get the information at 
the address location in question. This process is referred to as a “Fetch cycle”. 

 
 
 

 
Fig 1.3.1: Physical Memory Layout 
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1.4 – Secondary Memory Subsystem 

 
The Secondary Memory subsystem covers all storage devices hanging off the I/O hub. This category of 
storage devices almost exclusively represents non-volatile memory. 

The most common form of secondary storage in a general purpose computer is a Hard Disk that is tied to 
the ATA bus (also historically known as the IDE bus). Until recently, one would be forgiven for assuming 

that the hard disk was the sole secondary storage mechanism on a general purpose computer.  

The popularity of Flash memory and the increased storage capacity of removable storage media like the 
USB Mass Storage, have introduced more players into the secondary memory subsystem. 

From a technological perspective the main difference between the hard disk and flash memory is that the 
hard disk relies on magnetic media and a revolving head (mechanical moving parts) which makes it 
unsuitable for certain environments. Flash memory on the other hand, is based on solid-state 
electronics and hence does not have any moving parts.  

Data on a hard disk is stored on magnetic tracks in a cylindrical platter. Corresponding tracks on each 
platter make up a cylinder. The tracks are divided into sectors which represent the smallest 
addressable data block on the disk. A sector by default represents 512 bytes, although this can be 
modified. Each face of the cylindrical magnetic platter has a head. A sector is addressed by the cylinder, 
head and sector. There is often a logical sector number that is a sequential numbering system from 0 to n, 

where ‘n’ represent the total number of sectors on the disk. For each logical sector, there will be a physical 
sector number defined by the cylinder, head and sector.  

If RAM is volatile and Hard Disk is non-volatile, one may ask why we don’t replace the RAM with a Hard 
Disk. There are two main reasons why this is not possible – speed and byte addressability.   

Generally speaking, accessing a Hard Disk is about 10,000 times slower than accessing RAM. Note that 
from a CPU perspective, even accessing the RAM can be a bottleneck. This is the reason why the CPU 
maintains the L1 and L2 caches. Waiting for the hard disk can be prohibitively slow for the CPU. Generally 
applications will save data in RAM and periodically flush the data in “bursts” onto the hard disk. 

The second reason why a hard disk will not replace RAM is because, as we have already discussed, the 
smallest block of data that can be addressed by a hard disk is a sector of 512 bytes. The CPU would require 
access to individual bytes or words of data. 

A hard disk always maintains a Table of Contents at a fixed location. The location and format of this Table 

of contents will be a function of the file system that the hard disk supports. But generally the format of Table 
of contents will specify the different sectors where a file resides. Note that a file does not have to occupy 
contiguous sectors (and seldom does). As the file grows on the hard disk, it will use up sectors in different 
regions of the hard disk.  

Fig 1.4.1 shows an example of a how a table of contents can keep track of the sectors where a file resides. 
In this example there are 8 entries in the Table of Contents. 

 

Fig 1.4.1: Hard Disk Table of Contents 
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First we created “File A” and put it in sector 1.  

Then we created File B and put it in sectors 2, 3 and 4. Note the “FFFF” marker in the forth Table of 
Contents entry indicates that it is the last sector for File B. 

In the meantime, “File A” outgrew sector 1 and next free sector was sector 5. We put a pointer to the 5 th 
Table of Contents entry in the 1st Table of Contents entry to indicate that the balance of “File A” is now in 
sector 5. 

Next we create “File C” that takes up sectors 6 and 7. 

“File A” outgrows sector 5 and we extend it to the next free sector, which happens to be sector 8.  

Note that the sector entries in the Table of Contents refer to “logical” sectors. 

When a file is spread over non-contiguous sectors like ‘File A’ in the above example, it is said to be 
fragmented. 

Over extended use, a hard disk can get so fragmented that accessing any single file will require access to 
sectors in non-contiguous locations on the disk. This can impact performance as well as the life of the disk 
because it requires a lot of mechanical movement of the head on the disk.  

To circumvent fragmentation, computer users periodically run a utility to de-fragment their hard disk. A de-

fragmentation utility will try and collate sectors such that files occupy contiguous sectors. 
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1.5 – Networking Subsystem 
 
With the advent of the internet, the ability of a computer to talk to other computers around the world has 
become just as important as its ability to load instructions from memory and execute them. The networking 
subsystem is responsible for interfacing a computer to the outside world.  
 
A group of computers that are able to talk to each other form a computer network. Each computer in a 
network is also referred to as a node on that network.  

 
Most computers come equipped with a Network Interface Card (NIC) that hangs off the PCI bus on the 

motherboard.  
 
A NIC is responsible for accepting data from applications, formatting it and transmitting this data on a 
network medium. This out-going direction of data transfer is often referred to as the Transmit Path (Tx 
Path) in networking terminology.  

 
A NIC is also responsible for receiving data from a network media and forwarding it to applications that are 
interested in this data. This in-coming direction of data transfer is referred to as the Receive Path (Rx Path). 

 
Networking media represent the physical connection between computers. A wired networking medium 
implies some sort of an electrical wire connecting computers. A wireless networking medium represents 
computers connected by radio devices. 

 
The data from and to an application is referred to as the “pay-load” because this is the information that the 

user is willing to pay for in terms of transmission costs. On the Tx path, the NIC will pad additional data to 
the pay-load to account for control information overhead required for transmission of the pay-load. On the 
Rx path, the NIC will strip additional overhead data, before forwarding the pay-load to the applications. 
 
Various Media Access Control (MAC) Protocols define when and how data should be formatted and 
transmitted on a particular media. In general data is broken into small packets called “datagrams” and each 

datagram is addressed to a particular destination before transmission.  
 
The most prevalent wired MAC protocol is Ethernet. This is a network where every node on the network is 

free to transmit data at anytime. However the transmitting node should also confirm that its transmission did 
not collide with the transmission from another node at the same time. If such a collision is detected, the 

transmitting node waits a certain amount of time and tries again. The amount of time that a node waits is 
random to reduce the chances of multiple collisions. 
 
Fig 1.5.1 shows two computer networks connected together by a device known as a router. The router 

bridges the two networks so that computers on one of the networks can communicate with computers on the 
other network as if they were on the same network.  

 

Fig 1.5.1: Two Computer Networks connected by a Router 
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The internet is actually several smaller networks all over the world that are interconnected together in a 

similar way, such that any computer is able to talk to another computer. 
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2.0 – Operating System (OS) Fundamentals 

In the previous section we studied the various hardware subsystems in a computer. Ultimately, these varied 
subsystems aid in storing, loading and executing software applications and in communication between other 
computers. 

As you can imagine, even the most rudimentary tasks such as storing an application in a hard disk without 
over-writing other applications that are already in the hard disk and then asking the CPU to load an 
application from a particular location on the hard disk into RAM can be extremely cumbersome and error 
prone. For example you would probably prefer to identify your application by a name as opposed to the 
starting sector of its location in the hard disk. The starting address may change if you move your application 
from one hard disk into another. These sorts of difficulties beg for a management utility that allows a level of 
translation between what you wish to do and how it needs to be done. A Computer Operating system is 

effectively such a manager.   

In one sense, the Operating System is just another application which has the responsibility to ensure that all 
other applications have regulated and user friendly access to components on the motherboard. In this 
section, we will very briefly discuss some of the components and functions of an operating system. We will 
defer the more intricate details of an operating system to the ALS module on the Real Time Operating 
System. 
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2.1 – The OS Kernel 

 
The Kernel is the core of an Operation System. In this section we will walk through some of the common 

tasks performed by a kernel. It must be emphasized that there are several nuances that distinguish the 
kernels of different operating systems and that the discussion below is of a generic nature to give the 
student an appreciation for the considerations involved in kernel design and an introduction to terminologies. 
 
When a general purpose computer is powered up, the CPU is usually hard-wired to load instructions at a 
particular memory address, also referred to as the Reset Vector. Usually this address corresponds to some 

form of non-volatile Read-Only-Memory (ROM). The motherboard manufacturer would have placed a special 
program known as a Boot-Loader at this ROM location.  

 
The boot loader is responsible for locating the kernel components of the Operating System in the Secondary 
Storage (usually the Hard Disk or Flash memory) and loading it into the Primary memory (RAM). Once the 
kernel is loaded into memory, the boot loader asks the kernel to continue with system initialization. From this 
point onwards, the kernel is the manager of the computer system. Different kernels will operate in different 
ways, but the general responsibilities of a kernel are much the same.  
 
One of the first things the kernel has to do is to load and initialize the display, keyboard and mouse Drivers. 

A driver is a specialized piece of software that is designed to interface with peripheral hardware. The 
display, keyboard and mouse hardware are tied to one of the two hubs on the computer motherboard. Once 
the kernel initializes these peripherals, it is able to interact with the user. 
 
The next thing the kernel usually does is to load a “Device Manager” that is responsible for identifying all 

the peripheral devices and buses on the computer system. The kernel then allows the device manager to 
use the CPU to execute its instructions.  
 
The device manager will then load other operating system components based on the particular hardware 
peripherals that are available on a given motherboard. For example, file storage and communications are 
some of the most common tasks for a computer. Most motherboards will have dedicated hardware 
peripherals for these purposes. The device manager will detect these peripherals and load the 
corresponding operating system modules that are responsible for managing these peripherals.  
 
In the case of the various buses on the motherboard, the device manager will load the corresponding “Bus 
Drivers”. The bus drivers are responsible for enumerating (identifying who is on the bus) the devices on 

their respective buses and loading corresponding operating system components for each of the devices that 
is on the bus. In effect, the bus driver becomes the device manager for devices on its bus.  
 
Once the device manager has loaded all the components necessary for a particular computer system, the 
kernel then allows each of the loaded operating system components to use the CPU. The process where the 
kernel allows a component to use the CPU is referred to as scheduling.  

 
Finally the kernel loads the Shell and schedules it to run (in other words, allows it to use the CPU). The shell 
is the User Interface to the computer system. It is the face of the computer. Think of the Shell as a special 

operating system component that is responsible for interacting with the end user.  
 
A software component is usually a set of tasks. For example, the shell is a software component that is 
responsible for interacting with the user. At a minimum it will have two tasks – the first to accept input from 
the kernel and relay it to the user and the second will be to accept input from the user and relay it to the 
kernel. A kernel that allows multiple tasks to co-exist is referred to as a multitasking kernel. 

 
All the software components that are loaded need to access the CPU periodically. The Kernel usually gives 
each component a certain amount of time of CPU use and then gives the CPU to another component. The 
process where the kernel forces a task to relinquish the use of the CPU is referred to as preemption and a 
kernel that operates in this fashion is called a preemptive kernel. 

 
A multitasking kernel is responsible for keeping a list of all the tasks that are running on the system and 
scheduling each task as and when required. Some operating systems refer to these tasks as processes or 
threads. 
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Another responsibility of the kernel is to manage the primary memory. Usually the kernel delegates this to a 
component called the memory manager that is responsible for allocating and freeing memory that is 
required by each task. Most memory managers refer to memory using “virtual” addresses. These addresses 
map to physical memory address based on a table known as a “Page Table”. The use of virtual addresses 

allows the memory manager to assign more memory to tasks than is physically available in primary memory. 
It also allows the using of contiguous virtual addresses even when the physical locations may not be 
contiguous. When the memory manager detects that it has run out of physical memory, it will copy some of 
the least frequently accessed physical pages into secondary memory and then re-assign those physical 
locations to virtual addresses of tasks that are in immediate need of primary memory. This process by which 
the memory manager saves the contents of physical memory into secondary memory is referred to as 
“Paging-out” memory. The inverse operation where the memory manager copies contents from secondary 
memory to primary memory is referred to as “Paging-in” memory. The files in secondary memory used by 
the memory manager for this purpose are called the Page Files. 

 
Yet another important task performed by the kernel is Interrupt Servicing. When a CPU is interrupted by 

the interrupt controller, the CPU will load instructions from a predefined memory location known as the 
Interrupt Vector. The Kernel usually loads the instructions at these interrupt vector locations and hence 

controls what happens when a peripheral signals an interrupt. 
 
To summarize, one can think of the Kernel as an operating system component that arbitrates access to the 
CPU and the primary memory on the motherboard such that all other software components can concentrate 
on their specific tasks without stepping over other tasks that also require access to the CPU and primary 
memory.  
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2.2 – The OS File System   
 
Most operating system components are designed in a hierarchical architecture. The layers at the bottom of 
the hierarchy are responsible for interacting with the hardware while the layers at the top are responsible for 
providing a user friendly interface to access the layers at the bottom. The file system architecture in most 
operating systems will follow such a scheme.  
 
Fig 2.2.1 shows a generic file system architecture. Note that the file system is generally associated with 
secondary (non-volatile) memory. As discussed previously, most of these types of memory are block 
addressable. Hence, the lowest layer in such a file system is a Block Device Driver. Such a driver is 

responsible for reading from and writing to individual sectors on a hard-disk or to blocks in a flash memory 
device. The driver is not responsible for keeping track of all the sectors used by a particular file. That 
information is maintained at higher layers. The block driver allows higher layers to store and retrieve 
information at a certain location in the secondary storage device, remaining mostly oblivious to the greater 
relevance of the information being stored or retrieved. 
 
Most block devices accommodate the notion of Partitions within a block device. Partitions are mechanisms 

to divide a large block device into smaller, more manageable sections. These sections may be used for 
specific purposes. The Partition Manager layer is responsible for providing a layer of abstraction between 
higher layers that would refer to data in a particular partition and the block driver that does not necessarily 
view the block device as divided into partitions. 
 
Within each partition, data will be stored in a particular format. This format dictates the type of File System 
Driver that is used to manage the data in that partition. One of the most common file systems is the File 
Allocation Table (FAT) file system. It is at the file system driver layer that the file names and locations of 

each file’s contents are maintained. 
 
The topmost layer is the File Manager. This layer is a presentation layer. It allows users to view all the 

available files on the computer without distinguishing the files based on the file system, partition or block 
device that is used to store the contents of a file. 
 
 
 

 

Fig 2.2.1: File System Hierarchy 
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2.3 – The OS Networking Subsystem 
 
The Networking subsystem is perhaps one of the most hierarchical and standardized components of any 
operating system. The most compelling incentive for this is that to be able to communicate with other 
computers, there must be an agreement among operating system vendors as to the format of the control 
and data packets that will be exchanged between computers. These agreements are often referred to as 
Communication Protocols and are published standards that are available to all operating system vendors. 

The networking subsystem in a general purpose operating system is almost always designed with the 
intension of accommodating multiple communication protocols.  

The Open System Interconnect (OSI) model is a recommendation by the International Organization for 

Standardization (ISO) on how to architect the layers in a networking subsystem. It discusses a 7-layer model 
as shown in Fig 2.3.1.  

 

 

Fig 2.3.1: 7-Layer OSI Model 

 

Each of the layers in the OSI model is governed by the various communication protocols available at that 
layer. For example the most common Data Link Layer protocol in use today is the Ethernet protocol. The 
most common Network layer protocol is the Internet Protocol (IP) and the most common Transport layer 
protocol is the Transport Control Protocol (TCP).  

The layers above the Transport layer are less rigidly adhered to by operating system vendors. This is partly 
because the OSI model was introduced long after the TCP/IP protocol became ubiquitous and already 
existing installations never re-architected their networking subsystem to conform to the OSI model.   

The general thrust of the 7-layer model is that changes at the lower layers do not have to impact end users 
and applications dependent on them, because end users and applications don’t talk to them directly. 

Application Layer This layer is intended to assist applications and end-users by providing easy to 

use interfaces to perform communication tasks. 

Presentation Layer This layer is intended to abstract the differences in data format and 

representation (eg. Encryption) used by other layers beneath it. 

Session Layer This layer is responsible for determining the life of the network connections 

between applications and end users. 

Transport Layer This layer is responsible for the transport of information without errors and for 

providing throttling mechanisms to accommodate data buffer limitations. 

Network Layer This layer is responsible for routing and sequencing of data. 

Data Link Layer This layer controls how and when access to the physical layer can be gotten. 

Physical Layer This layer represents the physical media used from transmission of data. 
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3.0 – Conclusion 
 
In this set of notes on the General Purpose Computer Architecture, the student has been introduced to basic 
general purpose hardware and operating system, concepts and terminologies. This will serve as an 
adequate prerequisite for future modules on firmware and software engineering. 

 

 

 

 


