
Accelerated Learning Series

(www.ALearnOnline.com – A site dedicated to

education)

Modules in Computer Science &

Engineering

General Purpose Computer Architecture

A set of notes on the architecture of the general purpose processor and peripherals.

Author: SKG.
August 2006.

http://www.alearnonline.com/

Version 1.0 2

Revision History

Version 1.0 (August 2006)

 First version created

Version 1.0 3

Table of Contents.

Prerequisites ___ 4

Preface ___ 5

Acknowledgements __ 6

1.0 – Computer System Fundamentals ______________________________________ 7

1.1 – General Purpose Mother-Board __ 8

1.2 – The CPU ___ 10

1.3 – Primary Memory Subsystem __ 12

1.4 – Secondary Memory Subsystem __ 14

1.5 – Networking Subsystem ___ 16

2.0 – Operating System (OS) Fundamentals_________________________________ 18

2.1 – The OS Kernel __ 19

2.2 – The OS File System __ 21

2.3 – The OS Networking Subsystem __ 22

3.0 – Conclusion ___ 23

Version 1.0 4

Prerequisites

 Application Specific Integrated Circuit Design (ALS notes in Hardware Engineering)

Version 1.0 5

Preface

Prior modules in the Hardware Engineering series, discussed the physics of semiconductors and the design
of digital modules for specific applications. Through these modules the student has gained an appreciation
for the complexity, cost, and other time and effort related constraints in designing application specific
circuitry.

This background naturally leads us to the concept of a “General Purpose Processor”. Such a processor is
designed to load instructions from memory and execute them as opposed to being hard-wired to perform

one and only one function. The instructions in memory can be altered at will, without any need to change
the underlying hardware and thus allowing one to completely change the application for the processor by
changing the instruction bits stored in memory.

I start this module by discussing the layout of the circuit board for a modern general purpose computer (also
known as the motherboard). A general purpose computer is comprised of a general purpose processor
(also known as the microprocessor or Central Processing Unit - CPU) and peripheral modules that are

designed to work in concert toward storing, loading and executing instructions in memory.

This will be followed by a discussion on each of the modules on the motherboard from a functional
perspective. The student is encouraged to think about how these individual modules may be implemented in
hardware, based on the prior exposure to digital design.

Finally I will conclude by briefly introducing the Computer Operating System by discussing the purpose

that it serves and some of its more common components.

Version 1.0 6

Acknowledgements

I am grateful to A. Walker for taking the time to review this document and for providing very valuable and
constructive feedback. I am also indebted to M.K. Achuthan for providing valuable input and feedback at
various times during the writing of this set of notes.

Version 1.0 7

1.0 – Computer System Fundamentals

At the heart of every computer is a Central Processing Unit, also known as the CPU. It is responsible for
fetching instructions from memory and executing them. These instructions are invariably mathematical

operations on one or more pieces of data. Whether a computer is used to solve a complex mathematical
problem such as mapping the trajectory of a rocket that needs to go from the earth to the moon, or for a
more mundane operation like allowing me to write this document, the instructions that need to be executed
by the CPU are operations in logic that are implemented as a sequence of mathematical instructions.

A computer programmer translates a real-world problem into set of logical operations and then uses a tool
(known as a compiler or assembler) to convert these logical operations into mathematical instructions that

a CPU can execute. Note that the compiler/assembler are themselves a set of mathematical instructions that
allow the CPU to translate logical statements into mathematical instructions.

Once an application is written (real-world problem translated into logical statements and then converted to

mathematical instructions), the application is stored in some form of memory. When the CPU is asked to
execute this application, it has to go to the location in memory where the application is stored and then fetch
each mathematical instruction in the application and execute them in sequence until it completes the last
instruction in the application.

In this section, we will study in some detail the various subsystems that make up a computer.

Version 1.0 8

1.1 – General Purpose Mother-Board

Fig 1.1.1 shows a generic layout for a modern general purpose motherboard. We have a Central
Processing Unit (CPU) with direct access to a Memory Hub. For historical reasons the memry hub is also

known as the NorthBridge. The Memory Hub has three other direct links.

 The first link is to a Memory Bus that hooks the memory hub to a bank of Random Access
Memory (RAM).

 The second is to an Accelerated Graphics Port Bus that hooks the memory hub to an
Accelerated Graphics Port (AGP). The AGP serves as a fast visual interface into the computer.

 The third connection into the Memory Hub is yet another hub called the Input/Output Hub or I/O
Hub. For historical reasons, the I/O hub is also known as the SouthBridge. The I/O Hub hosts all

the other input and output interfaces into the computer.

The Universal Serial Bus (USB) is the modern way to interface external peripherals onto the motherboard.

It goes through the I/O Hub to access the rest of the system.

Similarly the Peripheral Component Interconnect (PCI) bus is yet another way to interface external

peripherals onto the motherboard. It also goes through the I/O Hub to access the rest of the system.

Fig 1.1.1: General Purpose Motherboard

Central

Processing

Unit

(CPU)

Memory

Hub

RAM

AGP

Input/Output

Hub

Hard Disk

USB

Mass

Storage

Card

USB

Network

Card

PCI

Video

Card

PCI

Network

Card

USB Bus PCI Bus

ATA Bus

Memory Bus

AGP Bus

Version 1.0 9

Yet another common I/O interface that is attached to the I/O hub is the AT Attachement (ATA). AT

identifies a storage part used in the original IBM Personal Computer. This interface falls in a category known
as mass storage devices because it allows storing large amounts of data.

The peripherals attached to the I/O hub generally fall under three categories – Non-Plug-&-Play, Plug-&-
Play and Hot-Swapping.

 Non-Plug-&-Play refers to peripherals that needs to be setup (using switches) to specify various
settings before they can be accessed over the I/O hub (eg. ATA bus).

 Plug-&-Play refers to peripherals that can be simply plugged into the bus and powered up (eg. PCI
bus).

 Hot-Swapping refers to peripherals that can be plugged in while the computer system is already
powered up (eg. USB bus).

A key thing to note in this layout is that data can flow from one peripheral to another peripheral over either of
the hubs without dependency on any other component including the CPU. For example it is common to plug
in a USB memory device on the USB bus and transfer data to the RAM directly. While this is happening the
CPU is free to continue processing unrelated instructions. This paradigm is commonly referred to as Direct
Memory Access (DMA).

In the following sections we will study each of the modules in Fig 1.1.1 from a functional perspective. We will
not cover details on the bus interfaces as these are fairly intricate and are covered by interface standards
that are publicly available (on the internet) so that peripheral manufacturers can provide standard and
compatible interfaces to motherboard manufacturers.

Version 1.0 10

1.2 – The CPU

Fig 1.2.1 shows a block diagram of the internal workings of the Central Processing Unit (CPU).
Fundamentally the CPU is responsible for fetching instructions from memory and executing them.

The task of executing instructions is done by the Arithmetic and Logic Unit (ALU). The ALU relies on very

fast memory that is physically resident inside the CPU for input and output to the ALU. These fast memory
modules are referred to as Registers. The ALU performs very simple arithmetic and logical operations on

data in the registers such as addition, subtraction, multiplication, division, bit-shifting, bit-AND, bit-OR, bit-
exclusive-OR etc.

The Memory interface is responsible for interfacing the CPU to the memory bus on the mother board. The
Fetch module will transfer instructions from memory to the registers in the CPU with the aid of the memory
interface and the decoding modules.

In most cases, the fetch module can continue to fetch the next instruction from memory while the CPU is
executing the previously fetched instruction. This paradigm is referred to as pipelining and it is a means of

increasing the efficiency (speed of execution) of the CPU. The drawback to pipelining is that, if the execution
of an instruction requires a jump to a location other than the next instruction in sequence, then the pipeline
needs to be flushed causing wasted clock cycles in the ALU while the fetch module picks instructions from
the new location.

Fig 1.2.1: CPU Architecture

Fetch

Instruction

L1-Cache

Decode

Instruction

Populate

Registers

ALU

Memory

Interface

CPU

L2-Cache

Memory

Interrupt

Controller

Version 1.0 11

Often times, recently executed instructions or data will be needed again. The L1-Cache is fast memory

located in the CPU where this information is preserved so as to avoid unnecessary delays by having to go
back to external memory over the memory bus.

The L2-Cache serves a similar purpose to the L1-Cache but is not physically located inside the CPU and

hence is slower to access than the L1-cache, but is still faster than accessing the memory.

Peripherals that need time critical access to the CPU, will be wired into an “Interrupt Controller” on the

motherboard. The interrupt controller can force the CPU to stop whatever it is currently doing, save its
current state and attend to an urgent request from a peripheral. Once the urgent request is serviced, the
CPU restores its previously saved state and continues from where it left off, prior to the interrupt.

Version 1.0 12

1.3 – Primary Memory Subsystem

In computer parlance, when people refer to the memory subsystem, they are usually referring to the primary
memory that is directly tied to the CPU over the memory bus and hub.

This primary storage memory is different from the registers and the CPU cache that we discussed in the
previous section. The CPU has to go over the memory bus to get to the primary memory and hence

does not have direct access to it.

The primary storage memory is also different from the larger secondary storage memory modules that are
linked to the CPU over the I/O Hub, in that it is byte addressable (can access individual bytes) whereas
secondary storage modules are usually block addressable (a block is a group of bytes).

The primary memory is usually slower than the registers and the cache memory, but larger in the
amount of data that it can store. In general the larger capacity memory types are slower in terms of

access times.

The primary memory on a motherboard is generally of two types – Read Only Memory (ROM) or Random
Access Memory (RAM). ROM memory is usually written to only once and then available for reading at

anytime after that. RAM memory can be read from or written to at anytime.

Both ROM and RAM memory can generally be addressed randomly at any location within the memory

without having to read sequentially from the beginning of the memory to the address where access is
required.

ROM is generally a form of non-volatile memory, meaning it does not require power to maintain its
contents. The most popular form of ROM modules is the Erasable-Programmable-Read-Only-Memory or
EPROMs. These contents of these modules can be erased and reprogrammed multiple times using

specialized hardware. Once programmed, the CPU can only read its contents but cannot change (write to) it.

The most prevalent form of RAM is Dynamic RAM or DRAM. This is a high density form of memory where a

bit of information is stored with 1 transistor and 1 capacitor. But the drawback to this type of RAM is that it
needs to be periodically “refreshed” (data recharged to counteract drain) in addition to having a constant
power supply.

Static RAM or SRAM is a less dense form of memory but does not have the refresh constraint imposed by
DRAM. Nevertheless, SRAM is also a form of volatile memory (like DRAM) and hence requires a constant

power supply.

SDRAM is a variation of DRAM that has a synchronous interface (tied to a clock edge for latching). By

default, DRAM uses an asynchronous interface (change occurs as soon as physically possible).

There is another category of memory modules referred to as Flash memory. Generally this category will fall

under secondary memory, but I will make mention of it this section on primary memory, because there is a
particular variety of flash memory that is byte addressable and is gaining popularity in embedded systems.

Unlike RAM, flash memory offers non-volatile storage. Flash, in a way, is the evolution of EPROMs. There
are two main types of flash memory – NOR-Flash and NAND-Flash. The difference between NOR and
NAND flash is that NOR is byte accessible although it takes longer to write to NOR. This characteristic

makes NOR flash useful for storing application code, since the CPU will only fetch (read) code and not have
to change it (write to that location). When used in this fashion, the code is said to be executed-in-place or
XIP, in that it does not have to be loaded into RAM before the CPU can fetch instructions from it.

M-Systems have come up with a combination of NOR and NAND such that a boot section appears like NOR
and the rest of the flash appears like NAND. This storage module is referred to as Disk-On-Chip.

Fig 1.3.1 shows the physical layout of primary memory. The memory bus is made up of “Address lines”,
“Data lines” and “Control lines”. When the CPU wants to access memory at a particular address, it puts the

address value on the address bus and tells the Memory module that it is interested in the data at that

Version 1.0 13

location with the help of the control lines. In response to the request by the CPU, the memory module will set
the Data lines to reflect the value of the data at that address location and use the control lines to indicate
that it has completed the operation. At this point, the CPU will read the Data lines and get the information at
the address location in question. This process is referred to as a “Fetch cycle”.

Fig 1.3.1: Physical Memory Layout

The number of Address lines will depend on the system architecture. In Fig 1.3.1, I have used 32 bit
addresses and so this reflects a 32-bit architecture. Most systems will employ various optimization
techniques to read more then 1 byte of data in a fetch cycle.

0x00000000 0xCC

0x00000001 0xCC

0x00000002

0xCC

0x00000003

0xCC

0x00000004

0xCC

0x00000005

0xCC

ADDRESS DATA
Address Lines

Data Lines

Control Lines

Version 1.0 14

1.4 – Secondary Memory Subsystem

The Secondary Memory subsystem covers all storage devices hanging off the I/O hub. This category of
storage devices almost exclusively represents non-volatile memory.

The most common form of secondary storage in a general purpose computer is a Hard Disk that is tied to
the ATA bus (also historically known as the IDE bus). Until recently, one would be forgiven for assuming

that the hard disk was the sole secondary storage mechanism on a general purpose computer.

The popularity of Flash memory and the increased storage capacity of removable storage media like the
USB Mass Storage, have introduced more players into the secondary memory subsystem.

From a technological perspective the main difference between the hard disk and flash memory is that the
hard disk relies on magnetic media and a revolving head (mechanical moving parts) which makes it
unsuitable for certain environments. Flash memory on the other hand, is based on solid-state
electronics and hence does not have any moving parts.

Data on a hard disk is stored on magnetic tracks in a cylindrical platter. Corresponding tracks on each
platter make up a cylinder. The tracks are divided into sectors which represent the smallest
addressable data block on the disk. A sector by default represents 512 bytes, although this can be
modified. Each face of the cylindrical magnetic platter has a head. A sector is addressed by the cylinder,
head and sector. There is often a logical sector number that is a sequential numbering system from 0 to n,

where ‘n’ represent the total number of sectors on the disk. For each logical sector, there will be a physical
sector number defined by the cylinder, head and sector.

If RAM is volatile and Hard Disk is non-volatile, one may ask why we don’t replace the RAM with a Hard
Disk. There are two main reasons why this is not possible – speed and byte addressability.

Generally speaking, accessing a Hard Disk is about 10,000 times slower than accessing RAM. Note that
from a CPU perspective, even accessing the RAM can be a bottleneck. This is the reason why the CPU
maintains the L1 and L2 caches. Waiting for the hard disk can be prohibitively slow for the CPU. Generally
applications will save data in RAM and periodically flush the data in “bursts” onto the hard disk.

The second reason why a hard disk will not replace RAM is because, as we have already discussed, the
smallest block of data that can be addressed by a hard disk is a sector of 512 bytes. The CPU would require
access to individual bytes or words of data.

A hard disk always maintains a Table of Contents at a fixed location. The location and format of this Table

of contents will be a function of the file system that the hard disk supports. But generally the format of Table
of contents will specify the different sectors where a file resides. Note that a file does not have to occupy
contiguous sectors (and seldom does). As the file grows on the hard disk, it will use up sectors in different
regions of the hard disk.

Fig 1.4.1 shows an example of a how a table of contents can keep track of the sectors where a file resides.
In this example there are 8 entries in the Table of Contents.

Fig 1.4.1: Hard Disk Table of Contents

File A

0005

File B

0003

0004

FFFF

0008 File C

0007

FFFF

FFFF

1 2 3 4

4

5 6 7 8

Version 1.0 15

First we created “File A” and put it in sector 1.

Then we created File B and put it in sectors 2, 3 and 4. Note the “FFFF” marker in the forth Table of
Contents entry indicates that it is the last sector for File B.

In the meantime, “File A” outgrew sector 1 and next free sector was sector 5. We put a pointer to the 5 th
Table of Contents entry in the 1st Table of Contents entry to indicate that the balance of “File A” is now in
sector 5.

Next we create “File C” that takes up sectors 6 and 7.

“File A” outgrows sector 5 and we extend it to the next free sector, which happens to be sector 8.

Note that the sector entries in the Table of Contents refer to “logical” sectors.

When a file is spread over non-contiguous sectors like ‘File A’ in the above example, it is said to be
fragmented.

Over extended use, a hard disk can get so fragmented that accessing any single file will require access to
sectors in non-contiguous locations on the disk. This can impact performance as well as the life of the disk
because it requires a lot of mechanical movement of the head on the disk.

To circumvent fragmentation, computer users periodically run a utility to de-fragment their hard disk. A de-

fragmentation utility will try and collate sectors such that files occupy contiguous sectors.

Version 1.0 16

1.5 – Networking Subsystem

With the advent of the internet, the ability of a computer to talk to other computers around the world has
become just as important as its ability to load instructions from memory and execute them. The networking
subsystem is responsible for interfacing a computer to the outside world.

A group of computers that are able to talk to each other form a computer network. Each computer in a
network is also referred to as a node on that network.

Most computers come equipped with a Network Interface Card (NIC) that hangs off the PCI bus on the

motherboard.

A NIC is responsible for accepting data from applications, formatting it and transmitting this data on a
network medium. This out-going direction of data transfer is often referred to as the Transmit Path (Tx
Path) in networking terminology.

A NIC is also responsible for receiving data from a network media and forwarding it to applications that are
interested in this data. This in-coming direction of data transfer is referred to as the Receive Path (Rx Path).

Networking media represent the physical connection between computers. A wired networking medium
implies some sort of an electrical wire connecting computers. A wireless networking medium represents
computers connected by radio devices.

The data from and to an application is referred to as the “pay-load” because this is the information that the

user is willing to pay for in terms of transmission costs. On the Tx path, the NIC will pad additional data to
the pay-load to account for control information overhead required for transmission of the pay-load. On the
Rx path, the NIC will strip additional overhead data, before forwarding the pay-load to the applications.

Various Media Access Control (MAC) Protocols define when and how data should be formatted and
transmitted on a particular media. In general data is broken into small packets called “datagrams” and each

datagram is addressed to a particular destination before transmission.

The most prevalent wired MAC protocol is Ethernet. This is a network where every node on the network is

free to transmit data at anytime. However the transmitting node should also confirm that its transmission did
not collide with the transmission from another node at the same time. If such a collision is detected, the

transmitting node waits a certain amount of time and tries again. The amount of time that a node waits is
random to reduce the chances of multiple collisions.

Fig 1.5.1 shows two computer networks connected together by a device known as a router. The router

bridges the two networks so that computers on one of the networks can communicate with computers on the
other network as if they were on the same network.

Fig 1.5.1: Two Computer Networks connected by a Router

Computers 1 through 4 are in one network and Computers 5 through 8 are on another network.

Computer 1

Computer 2

Computer 3

Computer 4

Computer 5

Computer 6

Computer 7

Computer 8

Router

Version 1.0 17

The internet is actually several smaller networks all over the world that are interconnected together in a

similar way, such that any computer is able to talk to another computer.

Version 1.0 18

2.0 – Operating System (OS) Fundamentals

In the previous section we studied the various hardware subsystems in a computer. Ultimately, these varied
subsystems aid in storing, loading and executing software applications and in communication between other
computers.

As you can imagine, even the most rudimentary tasks such as storing an application in a hard disk without
over-writing other applications that are already in the hard disk and then asking the CPU to load an
application from a particular location on the hard disk into RAM can be extremely cumbersome and error
prone. For example you would probably prefer to identify your application by a name as opposed to the
starting sector of its location in the hard disk. The starting address may change if you move your application
from one hard disk into another. These sorts of difficulties beg for a management utility that allows a level of
translation between what you wish to do and how it needs to be done. A Computer Operating system is

effectively such a manager.

In one sense, the Operating System is just another application which has the responsibility to ensure that all
other applications have regulated and user friendly access to components on the motherboard. In this
section, we will very briefly discuss some of the components and functions of an operating system. We will
defer the more intricate details of an operating system to the ALS module on the Real Time Operating
System.

Version 1.0 19

2.1 – The OS Kernel

The Kernel is the core of an Operation System. In this section we will walk through some of the common

tasks performed by a kernel. It must be emphasized that there are several nuances that distinguish the
kernels of different operating systems and that the discussion below is of a generic nature to give the
student an appreciation for the considerations involved in kernel design and an introduction to terminologies.

When a general purpose computer is powered up, the CPU is usually hard-wired to load instructions at a
particular memory address, also referred to as the Reset Vector. Usually this address corresponds to some

form of non-volatile Read-Only-Memory (ROM). The motherboard manufacturer would have placed a special
program known as a Boot-Loader at this ROM location.

The boot loader is responsible for locating the kernel components of the Operating System in the Secondary
Storage (usually the Hard Disk or Flash memory) and loading it into the Primary memory (RAM). Once the
kernel is loaded into memory, the boot loader asks the kernel to continue with system initialization. From this
point onwards, the kernel is the manager of the computer system. Different kernels will operate in different
ways, but the general responsibilities of a kernel are much the same.

One of the first things the kernel has to do is to load and initialize the display, keyboard and mouse Drivers.

A driver is a specialized piece of software that is designed to interface with peripheral hardware. The
display, keyboard and mouse hardware are tied to one of the two hubs on the computer motherboard. Once
the kernel initializes these peripherals, it is able to interact with the user.

The next thing the kernel usually does is to load a “Device Manager” that is responsible for identifying all

the peripheral devices and buses on the computer system. The kernel then allows the device manager to
use the CPU to execute its instructions.

The device manager will then load other operating system components based on the particular hardware
peripherals that are available on a given motherboard. For example, file storage and communications are
some of the most common tasks for a computer. Most motherboards will have dedicated hardware
peripherals for these purposes. The device manager will detect these peripherals and load the
corresponding operating system modules that are responsible for managing these peripherals.

In the case of the various buses on the motherboard, the device manager will load the corresponding “Bus
Drivers”. The bus drivers are responsible for enumerating (identifying who is on the bus) the devices on

their respective buses and loading corresponding operating system components for each of the devices that
is on the bus. In effect, the bus driver becomes the device manager for devices on its bus.

Once the device manager has loaded all the components necessary for a particular computer system, the
kernel then allows each of the loaded operating system components to use the CPU. The process where the
kernel allows a component to use the CPU is referred to as scheduling.

Finally the kernel loads the Shell and schedules it to run (in other words, allows it to use the CPU). The shell
is the User Interface to the computer system. It is the face of the computer. Think of the Shell as a special

operating system component that is responsible for interacting with the end user.

A software component is usually a set of tasks. For example, the shell is a software component that is
responsible for interacting with the user. At a minimum it will have two tasks – the first to accept input from
the kernel and relay it to the user and the second will be to accept input from the user and relay it to the
kernel. A kernel that allows multiple tasks to co-exist is referred to as a multitasking kernel.

All the software components that are loaded need to access the CPU periodically. The Kernel usually gives
each component a certain amount of time of CPU use and then gives the CPU to another component. The
process where the kernel forces a task to relinquish the use of the CPU is referred to as preemption and a
kernel that operates in this fashion is called a preemptive kernel.

A multitasking kernel is responsible for keeping a list of all the tasks that are running on the system and
scheduling each task as and when required. Some operating systems refer to these tasks as processes or
threads.

Version 1.0 20

Another responsibility of the kernel is to manage the primary memory. Usually the kernel delegates this to a
component called the memory manager that is responsible for allocating and freeing memory that is
required by each task. Most memory managers refer to memory using “virtual” addresses. These addresses
map to physical memory address based on a table known as a “Page Table”. The use of virtual addresses

allows the memory manager to assign more memory to tasks than is physically available in primary memory.
It also allows the using of contiguous virtual addresses even when the physical locations may not be
contiguous. When the memory manager detects that it has run out of physical memory, it will copy some of
the least frequently accessed physical pages into secondary memory and then re-assign those physical
locations to virtual addresses of tasks that are in immediate need of primary memory. This process by which
the memory manager saves the contents of physical memory into secondary memory is referred to as
“Paging-out” memory. The inverse operation where the memory manager copies contents from secondary
memory to primary memory is referred to as “Paging-in” memory. The files in secondary memory used by
the memory manager for this purpose are called the Page Files.

Yet another important task performed by the kernel is Interrupt Servicing. When a CPU is interrupted by

the interrupt controller, the CPU will load instructions from a predefined memory location known as the
Interrupt Vector. The Kernel usually loads the instructions at these interrupt vector locations and hence

controls what happens when a peripheral signals an interrupt.

To summarize, one can think of the Kernel as an operating system component that arbitrates access to the
CPU and the primary memory on the motherboard such that all other software components can concentrate
on their specific tasks without stepping over other tasks that also require access to the CPU and primary
memory.

Version 1.0 21

2.2 – The OS File System

Most operating system components are designed in a hierarchical architecture. The layers at the bottom of
the hierarchy are responsible for interacting with the hardware while the layers at the top are responsible for
providing a user friendly interface to access the layers at the bottom. The file system architecture in most
operating systems will follow such a scheme.

Fig 2.2.1 shows a generic file system architecture. Note that the file system is generally associated with
secondary (non-volatile) memory. As discussed previously, most of these types of memory are block
addressable. Hence, the lowest layer in such a file system is a Block Device Driver. Such a driver is

responsible for reading from and writing to individual sectors on a hard-disk or to blocks in a flash memory
device. The driver is not responsible for keeping track of all the sectors used by a particular file. That
information is maintained at higher layers. The block driver allows higher layers to store and retrieve
information at a certain location in the secondary storage device, remaining mostly oblivious to the greater
relevance of the information being stored or retrieved.

Most block devices accommodate the notion of Partitions within a block device. Partitions are mechanisms

to divide a large block device into smaller, more manageable sections. These sections may be used for
specific purposes. The Partition Manager layer is responsible for providing a layer of abstraction between
higher layers that would refer to data in a particular partition and the block driver that does not necessarily
view the block device as divided into partitions.

Within each partition, data will be stored in a particular format. This format dictates the type of File System
Driver that is used to manage the data in that partition. One of the most common file systems is the File
Allocation Table (FAT) file system. It is at the file system driver layer that the file names and locations of

each file’s contents are maintained.

The topmost layer is the File Manager. This layer is a presentation layer. It allows users to view all the

available files on the computer without distinguishing the files based on the file system, partition or block
device that is used to store the contents of a file.

Fig 2.2.1: File System Hierarchy

Block Driver 1 Block Driver 2 Block Driver N

Partition Driver 1 Partition Driver 2 Partition Driver N

File System Driver 1 File System Driver 2 File System Driver N

File Manager

Version 1.0 22

2.3 – The OS Networking Subsystem

The Networking subsystem is perhaps one of the most hierarchical and standardized components of any
operating system. The most compelling incentive for this is that to be able to communicate with other
computers, there must be an agreement among operating system vendors as to the format of the control
and data packets that will be exchanged between computers. These agreements are often referred to as
Communication Protocols and are published standards that are available to all operating system vendors.

The networking subsystem in a general purpose operating system is almost always designed with the
intension of accommodating multiple communication protocols.

The Open System Interconnect (OSI) model is a recommendation by the International Organization for

Standardization (ISO) on how to architect the layers in a networking subsystem. It discusses a 7-layer model
as shown in Fig 2.3.1.

Fig 2.3.1: 7-Layer OSI Model

Each of the layers in the OSI model is governed by the various communication protocols available at that
layer. For example the most common Data Link Layer protocol in use today is the Ethernet protocol. The
most common Network layer protocol is the Internet Protocol (IP) and the most common Transport layer
protocol is the Transport Control Protocol (TCP).

The layers above the Transport layer are less rigidly adhered to by operating system vendors. This is partly
because the OSI model was introduced long after the TCP/IP protocol became ubiquitous and already
existing installations never re-architected their networking subsystem to conform to the OSI model.

The general thrust of the 7-layer model is that changes at the lower layers do not have to impact end users
and applications dependent on them, because end users and applications don’t talk to them directly.

Application Layer This layer is intended to assist applications and end-users by providing easy to

use interfaces to perform communication tasks.

Presentation Layer This layer is intended to abstract the differences in data format and

representation (eg. Encryption) used by other layers beneath it.

Session Layer This layer is responsible for determining the life of the network connections

between applications and end users.

Transport Layer This layer is responsible for the transport of information without errors and for

providing throttling mechanisms to accommodate data buffer limitations.

Network Layer This layer is responsible for routing and sequencing of data.

Data Link Layer This layer controls how and when access to the physical layer can be gotten.

Physical Layer This layer represents the physical media used from transmission of data.

Version 1.0 23

3.0 – Conclusion

In this set of notes on the General Purpose Computer Architecture, the student has been introduced to basic
general purpose hardware and operating system, concepts and terminologies. This will serve as an
adequate prerequisite for future modules on firmware and software engineering.

