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Preface  

As I started working on this set of notes, I was confounded by many questions related to the most fruitful 
approach to take. To start with it is fair to question the relevance of Assembler level programming in the 
midst of the more popular and pervasive high level programming languages. Once one justifies its 
relevance, there is still the question of which processor to choose to illustrate the concepts in Assembler 
programming. 
 
Over the last two decades I have observed the number of Assembler programmer positions in the industry 
dwindle substantially. Today there are probably only two computer industries that exploit the skills of 
Assembler programmers. The first would be those who write very specialized software that cannot be 
adequately generated by generic compilers. The other industry would be those who need to understand and 
resolve difficult problems that hinge on the hardware in which the problems manifest. Besides these two 
industries however, the average high level computer programmer also benefits, to a lesser extent 
admittedly, from knowledge of Assembler programming in understanding shortcomings of a compiler and 
sometimes even revealing faults in their high level code. Even if you find that you will never program a 
computer at the Assembler level, a preliminary course in Assembler programming primes the student for 
better grasping constructs in higher level languages. 
 
Since the Personal Computer (PC) has become ubiquitous and since the PC is based on the Intel x86 

processor, it seemed convenient to use the x86 architecture for illustration here.  
 
The x86 processor operates in 64-bit mode in most modern personal computers. Hence I have adapted an 
earlier set of notes that used the 16-bit mode into the 64-bit mode. The samples in these notes require the 
GAS assembler. 
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1.0 – x64 Architecture 

The general purpose computer architecture prepared us with an understanding of the various components 
that make up a computer. Hence we are familiar with concepts surrounding the CPU, Registers, Memory, 
data buses, address buses, instruction mnemonics and operands. In this section we delve a little deeper into 
a specific processor type - namely the x64 processor.  
 
The emphasis in this section however, will be to expose the student to the mechanics of writing assembler 
code, converting that to machine code and finally executing and debugging the code. 
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1.1 – x64 Register set 
 
As discussed in the General Purpose Computer Architecture notes, Registers are very fast access memory 
locations in the CPU.  
 
The x64 processor has the following types of Registers: 
 
64-bit General Purpose Registers – RAX, RBX, RCX, RDX, RBP, RDI, RSP and R8 to R15 
Pointer Registers – RIP, RSP 
Flags Registers – RFLAGS 
Floating Point Registers – FPR0 to FPR7 
 

In addition to the above there are segment registers (not commonly used in x64), Control registers, memory 
management registers, debug registers, virtualization registers, performance registers etc. 
 
 
General Registers: 

 
A byte is defined as 8 bits, a word is 16 bits, a double word is 32 bits, a quadword is 64 bits and a double 
quadword is 128 bits. Intel uses the “little endian” format where lower significant bytes are stored in lower 
memory addresses.  
 
For the first eight registers, replacing “r” with “e” will allow you to access the double words at the lower 
significant addresses. 
 
For the RAX, RBX, RCX, and RDX registers removing the “r” will allow you to access the words at the lower 
significant addresses. 
 
 
Index Registers: 

 
Some computer instructions operate on contiguous memory locations starting at a particular address and for 
a certain size. A common example would be an instruction that copies a string (an array of characters that 
often ends with a NULL character) from one location in memory to another location. This instruction would 
need the start address of the source string, the length of the source string and the start address of the 
destination string. The instruction can then index with reference to the start address of the source and 

destination locations to access each subsequent memory location. 
 
The “RSI” and “RDI” are both 64-bit registers that are commonly used as source and destination index 
registers. 

 
Pointer Registers: 

 
“RSP” is the 64-bit Stack Pointer register.  

 
“RIP” is the 64-bit Instruction Pointer register.  

 
“RBP” is the 64-bit Base Pointer register, that is commonly used by functions to save the “RSP” register 

before reusing the “RSP” register to allocate memory on the stack of local variables. 
 
Flags Register: 

 
The CPU stores the results of certain operations in the “RFLAGS” register. The following defines the 8 
commonly used flag bits in the flags register: 
 
 

Symbol Bit Name Set if 

CF 0 Carry Operation generated a carry or borrow 

PF 2 Parity Last byte has an even number of 1’s, else 0 

AF 4 Adjust Carry or borrow out of the four least significant bits (BCD support) 
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ZF 6 Zero Result was 0 

SF 7 Sign Most significant bit of results is 1 

IF 9 Interrupt Interrupt Enable 

DF 10 Direction Direction string instructions operate (increment or decrement) 

OF 11 Overflow Overflow on signed operation 

 
 
 
Common uses of registers: 

 
RDI   – Arg 1 
RSI   – Arg 2 
RDX   – Arg 3 
RCX   – Arg 4 
R8   – Arg 5 
R9   – Arg 6 
 
RAX   – return 
 
RSP   – stack pointer 
 
RIP   – instruction pointer 
 
EFLAGS  - flags 
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1.2 – Assembler Directives 
 
A computer program is nothing more than a set of instructions. Some of these instructions target the 
software that converts the program to machine language. The rest of the instructions are meant to be 
executed by the processor for which the program is written.  
 
The software that coverts an assembly language program to machine language is called an Assembler. 
The instructions directed at the assembler are referred to as Assembler directives. Since these directives 

are Assembler specific, they will not apply to all Assemblers. In the discussion below, I am referring to the 
GAS Assembler. Let us examine some common GAS Assembler directives. 
 
 
Data Section Directive: 

 
Most programs will need to use certain constant values throughout the program. It would be useful to refer to 
these “constants” by name and define the constant just once and get the assembler to replace every 

instance where that name is used with its constant value. This aids the programmer by having to change the 
constant in only a single location instead of every location where it is used, should the constant value have 
to change at some point. 
 
The Data section serves this purpose. The following is an example of a data section: 
 
.data 

 CR  =  13 

 LF  =  10 

 msgStr:  .ascii   "Hello World!\n" 

 msgStrpost: .byte  CR, LF 

 msgStrLen =  .-msgStr 

 
“.data” is a keyword known to the Assembler. It tells the Assembler that you intend to define initialized data 
and constants in this section. “CR” is a coder friendly name for Carriage Return, while “LF” stands for Line 
Feed. They have ASCII codes of 13 and 10 respectively. “msgStr” is a name to track the starting location of 
the string we want to use. “msgStrLen” is a constant that defines the length of our string. Note how we add 
the bytes for CR and LF to the end of our message string. In defining “msgStrLen”, the “.” indicates to the 
assembler that you are referring to the current location in memory. Hence “. - msgStr” will give us the 
number of bytes in the message string. 
 
BSS Section Directive: 

 
 
Every program will need some reserved memory to keep track of values that change from time to time. For 
ease of use, we will give these memory locations unique names and will refer to them as “variables”. 

 
Below is an example of the “.bss” Assembler directive to define memory locations for variables. 
 
section .bss 

 

 var1 resb 32 

 

Here we are defining a variable called “var1” and reserving 32 bytes for it. 
 
Code Section Directive: 

 
The code segment is defined using the keyword “Segment” with the ‘text’ identifier as shown below. 
 
 
section .text 

 

 global main 

 

 main: 
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 ;write (1, message, 13) 

 mov rax, 1 

 mov rdi, 1 

 mov rsi, message 

 mov rdx, msgLen 

 syscall 

 

 ;exit(0) 

 mov rax, 60 

 xor rdi, rdi 

 syscall 

 
 
The “Code” segment contains the actual instructions that are intended to be executed by the processor.  
 
The “mov” instructions are instructions known to the x64 processor. They are not assembler directives. “mov 
rax, 1” is an instruction asking the processor to move “1” to the 64-bit “rax” register.  
 
 
 
Operand Syntax: 

 
$   -  Constants start with $ 
%  - Registers start with % 
()  - Parenthesis dereference addresses in registers of variables.   
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1.3 – Your First Computer Program – “Hello World!”  
 
 
A program is generally written using a text editor. If you don’t have a favorite editor, you can use Notepad++. 
 
Type the following lines of code into your notepad editor, or copy and paste it into the editor. 
 
#=============================================================== 

# File:   Sample1.s 

# Assemble:  gcc -c Sample1.s 

# Link:   ld Sample1.o –o Sample1 

# Run:   ./Sample1 

#=============================================================== 

 

# Add the global directive so the symbol "_start" is made available  

# in the object code export table. 

# If the symbol is not in the export table at link time, the linker  

# will not know about it. 

# _start is the default entrypoint for an executable and if the linker  

# can see it, it will use that as the Entrypoint.  

# If you want a different entrypoint, you can use the -e link option.  

# Eg. ld -e main Sample1.o 

.global _start 

   

# This is the section where the assembler assumes your code is located  

.text 

 

__start: 

         # write(1, msgStr, msgStrLen) 

  # "1" is the sys code for write. 

  # Note the "$1" tells the assembler to use the value "1".  

        mov     $1,   %rax                  

             

  # "1" is the stdout file handle.     

        mov     $1,   %rdi                 

   

  # Address of string to output.  

  # Note here we are passing a variable prefixed by "$". 

  # The Assembler will replace $msgStr with the address of msgStr. 

        mov     $msgStr,  %rsi              

            

             

  # Number of bytes in msgStr. 

  # Note here we are passing a constant. 

  # Invoke operating system to do the write. 

        mov     $msgStrLen, %rdx                 

             

  # System call 60 is exit.       

    

        syscall                            

 

         # exit(0) 

  # We want return code 0. 

  # Invoke operating system to exit. 

        mov     $60, %rax                  

        xor     %rdi, %rdi                 

        syscall                            

  

# This is the section where the assembler expects initialized data 

# Data types recognized include .byte (1 byte), .short (2 bytes), .long (4 bytes), 

# .string or .ascii (length based on length of string). Constants are defined 

# with the “=” sign.  

.data 

 CR  =  13 

 LF  =  10 

 msgStr:  .ascii   "Hello World!\n" 

 msgStrpost: .byte  CR, LF 

https://notepad-plus-plus.org/download/v7.5.1.html
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 msgStrLen =  .-msgStr 

 

 
 
Save the file as “Sample1.asm” and use the following commands to assemble, link and run this code using 
GAS… 
 

gcc -c Sample1.s 

ld Sample1.o –o Sample1 

./Sample1 

 
As an aside, note that there are two common file formats used for object and executable files – COFF and 
ELF. COFF stands for Common Object File Format while ELF stands for Executable and Linking Format. 
Microsoft Visual C++ compilers generate the COFF format while GCC generates the ELF format. 



Version 1.1 13 

1.4 – Debugging a program  
 
Once you get through the Assembler and linker phase and create an executable file, there is always an urge 
to run the program and see if it behaves as you expect it to. It is advisable to use a tool called a “debugger” 

to walk through the code to ensure that the logic that is being executed is exactly what was intended. A 
debugger allows you to walk over (trace) individual instructions and confirm the output of each instruction. 
 
“gdb” is GNU debugger available on Linux. To load “Sample1.exe” in the debugger, type “gdb <filename>” 

in the directory where sample1.exe is located.  
 

 
 
You can now set a breakpoint at the start of the program (“main”) and run to the breakpoint… 

 

 
 
Once you hit the breakpoint, you can disassemble the program and look at how the Assembler assembled 
your code… 
 

 
 
Note the code at offset +14. The Assembler is using the address of “msgStr”, whereas in the code in offset 
+21, it is using the value of the constant “msgStrLen”. 
 
Now look at the value of the rax register before you execute your “mov” instruction… 
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Now set a breakpoint right after the first move instruction and step over the “mov” instruction and observe 
the register again… 
 

 
 
  
Learn some of the other command available in gdb to access your variables and get familiar with using the 
debugger. It will prove to be the most valuable tool at your disposal. You can find some of the gdb 
documentation here. 
 
 
 
 
 
. 
 
 
 
 
 
 
 
 
 

 

https://gcc.gnu.org/onlinedocs/gcc-3.3.5/gnat_ug_unx/Introduction-to-GDB-Commands.html
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1.5 – Interacting with the User  
 
In almost any computer program, there is a need to get input from the user of the program. The program’s 
behavior is often dependent on the input that is supplied by the user. In this section we will write a sample 
that gets input from the user using the Standard Input. 
 
The most efficient way to master any programming language is to practice writing your own sample 
programs. Hence I encourage you to study the samples provided in each of these sections and attempt to 
duplicate their behavior on your own by using the same or similar instructions.  
 
Another very useful programming technique is to do incremental additions. For example, with the sample 
below, you can first try and put up a prompt to the user. Then try and collect information from the user and 
then finally try and display the received input. At each of these interim stages, assemble and link your 
program to confirm that it is behaving as you would expect. 
 
The only new construct that is introduced in the sample below is the use of the READ function code. This 
code indicates to LINUX that you are asking it to read input from the user. The number of characters read by 
LINUX is going to be available in the AX register. This is also referred to as the “return value”. In the x86 
assembler, the return value from any call is usually passed using the AX register. 
 
Once you have studied the following sample, assemble and link the sample using the commands provided in 
the header of the sample.  
 
You may observe that in the sample below, I have used the “xor ax, ax” instruction when I wanted to zero 
the contents of a register. An “xor” instruction is an exclusive-or operation. So if you apply that operation to 
the same register in the source and destination operand fields, you are bound to make the contents of the 
register to be zero. 
 
You may wonder why I chose an “xor” over a more direct “mov ax, 0” instruction. This has to do with 
efficiency. In the older processors, a “mov” instruction from a memory to a register would use 4 clock cycles 
of the CPU, whereas an xor usually cost only 2 clock cycles. Needless to say these sorts of savings are not 
worth much (if anything at all) with the increased clock speeds and more efficient instructions of modern 
processors. 
 
 
#=============================================================== 

# File:   Sample2.s 

# Assemble:  gcc -c Sample2.s 

# Link:   ld Sample2.o –o Sample2 

# Run:   ./Sample2 

#=============================================================== 

 

.global _start 

   

# This is the section where the assembler assumes your code is located  

.text 

 

_start:  

 

#write (1, promptMsg, msgLen)      

 mov     $1,   %rax                    

 mov     $1,   %rdi                 

 mov     $promptMsg,  %rsi             

 mov     $promptMsgLen, %rdx                    

 syscall                            

 

       #read (0, inputBuffer, bufLen) 

       mov  $0,  %rax 

       mov  $0,  %rdi 

       lea  (inputBuffer), %rsi 

       mov  $bufLen, %rdx 

       syscall 
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 #Add and ! and CR to buffer 

 lea (inputBuffer), %rsi 

dec %rax 

 movb $33,  (%rax, %rsi, 1) 

 inc %rax 

 movb $CR,  (%rax, %rsi, 1) 

 inc %rax 

 movb $LF,  (%rax, %rsi, 1) 

 inc %rax 

 mov %rax,  (nameLen) 

 

       #write (1, Greetings, GreetingLen) 

       mov  $1,    %rax 

       mov  $1,    %rdi 

       mov  $Greetings,  %rsi 

       mov  $GreetingLen, %rdx 

       syscall 

                

 #write (1, inputBuffer, nameLen) 

        mov  $1,    %rax 

        mov  $1,    %rdi 

        mov  $inputBuffer, %rsi 

        mov  nameLen,  %rdx 

        syscall 

                

        #exit(0) 

        mov  $60,   %rax 

        xor  %rdi,    %rdi 

        syscall 

  

#=============================================================== 

  

.data 

 CR  =   13 

 LF  =   10 

 bufLen  =   100 

  

 promptMsg: .ascii   "Enter your name: " 

 promptMsgLen =  .-promptMsg 

  

 CR_LF_1: .byte  CR, LF 

 Greetings:   .ascii       "Hello" 

     GreetingLen  =            .-CR_LF_1 

  

#=============================================================== 

  

# This is the section where the assembler expects uninitialized data 

.bss 

 

 .lcomm   inputBuffer,  bufLen 

 .lcomm  nameLen,  4  
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2.0 – Jump Instructions 

In the previous section we gained the knowledge to write sequential instructions that let us get input from a 
user and process it. While sequential instructions are the primary mechanism describing a set of steps, it 
can be very limiting in our ability to reuse our code.  

Imagine how difficult it would be if we had to explicitly write the code to read user input every time we 
needed to get user input within a program. It would be so much easier if we could jump to the code that does 
the reading of user input every time we need to get user input.  

The construct of Jump instructions is designed to do just that. They allow the coder to move around the 
program without the sequential processing limitation. 

In this section we will study the common Jump instructions available in the x86 architecture. 
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2.1 – Unconditional Jumps (JMP) 
 
An unconditional jump, as the name implies, allows the transfer of execution from one part of your program 
to another without any conditions. 
 
All jump instructions work by altering the value of the IP register.  
 
Below is a sample that shows the operation of the Jmp mnemonic. This modifies the previous sample to skip 
the greetings message. 
 
#=============================================================== 

# File:   Sample3.s 

# Assemble:  gcc -c Sample3.s 

# Link:   ld Sample3.o –o Sample3 

# Run:   ./Sample3 

#=============================================================== 

 

.global _start 

   

# This is the section where the assembler assumes your code is located  

.text 

 

_start:  

 

#write (1, promptMsg, msgLen)      

 mov     $1,   %rax                    

 mov     $1,   %rdi                 

 mov     $promptMsg,  %rsi             

 mov     $promptMsgLen, %rdx                    

 syscall                            

 

       #read (0, inputBuffer, bufLen) 

       mov  $0,  %rax 

       mov  $0,  %rdi 

       lea  (inputBuffer), %rsi 

       mov  $bufLen, %rdx 

       syscall 

     

 #Add an “!” and CR to buffer 

 lea (inputBuffer), %rsi 

dec %rax 

 movb $33,  (%rax, %rsi, 1) 

 inc %rax 

 movb $CR,  (%rax, %rsi, 1) 

 inc %rax 

 movb $LF,  (%rax, %rsi, 1) 

 inc %rax 

 mov %rax,  (nameLen) 

     

 #Unconditional jump 

jmp  SkipGreetings 

 

       #write (1, Greetings, GreetingLen) 

       mov  $1,    %rax 

       mov  $1,    %rdi 

       mov  $Greetings,  %rsi 

       mov  $GreetingLen, %rdx 

       syscall 

 

SkipGreetings: 

                

 #write (1, inputBuffer, nameLen) 

        mov  $1,    %rax 

        mov  $1,    %rdi 

        mov  $inputBuffer, %rsi 

        mov  nameLen,  %rdx 

        syscall 
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        #exit(0) 

        mov  $60,   %rax 

        xor  %rdi,    %rdi 

        syscall 

  

#=============================================================== 

  

.data 

 CR  =   13 

 LF  =   10 

 bufLen  =   100 

  

 promptMsg: .ascii   "Enter your name: " 

 promptMsgLen =  .-promptMsg 

  

 CR_LF_1: .byte  CR, LF 

 Greetings:   .ascii       "Hello" 

     GreetingLen  =            .-CR_LF_1 

  

#=============================================================== 

  

# This is the section where the assembler expects uninitialized data 

.bss 

 

 .lcomm   inputBuffer,  bufLen 

 .lcomm  nameLen,  4  
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2.2 – Compare instruction (CMP) 
 
Recall the flags register… 
 

Symbol Bit Name Set if 

CF 0 Carry Operation generated a carry or borrow 

PF 2 Parity Last byte has an even number of 1’s, else 0 

AF 4 Adjust Carry or borrow out of the four least significant bits (BCD support) 

ZF 6 Zero Result was 0 

SF 7 Sign Most significant bit of results is 1 

IF 9 Interrupt Interrupt Enable 

DF 10 Direction Direction string instructions operate (increment or decrement) 

OF 11 Overflow Overflow on signed operation 

 
 
The compare instruction is essentially a subtract instruction that does not alter the value of the operands but 
impacts the value of the flags registers just like a subtract instruction would. We study the compare 
instruction because its impact on the flags register is exploited by many Jump instructions. 
 
You can type the following instructions into one of your earlier samples and trace each instruction and see 
how it impacts the flags register. 
 
 
   mov  $9, %rax 

   mov  $8, %rbx 

   mov  $9, %rcx 

 

   cmp  %rax, %rbx 

 

   cmp  %rbx, %rax 

 

   cmp  %rax, %rcx 

 

The following debugger output shows that the three “mov” instructions did not impact the flags register. 
 

 
 

 
 
 

 
 
 
The “cmp %rax, %rbx” involves (%rbx - %rax or “8 – 9”). In signed arithmetic, this leads to “-1”. So we 
expect the “CF”, “AF” and “SF” flags to be set…  
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The “cmp %rbx, %rax” involves (%rax - %rbx or “9 - 8”). In both signed and unsigned arithmetic, this leads to 
a +1. So we expect the previously set flags to be cleared... 
 

 
 
The “cmp %rax, %rcx” involves “9 – 9”. This will yield “0” and hence the “ZF” and the “PF” flag is set... 
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2.3 – Zero or Equality Jumps (JZ, JE, JNZ, JNE) 
 

.The Jump Zero (“JZ”) and the Jump Equal (“JE”) instructions do the exact same thing – they both check if 
the ZERO flag is set and if it is, they jump to the tag provided in the operand. 
 
Similarly the Jump Not Zero (“JNZ”) and the Jump Not Equal (“JNE”), jump to the tag provided in the 
operand if the ZERO flag is not set. 
 
The sample below demonstrates the use of these instructions. Note that I have used the “JE” and “JNE” 
instructions. You can replace these with “JZ” and “JNZ” respectively, without altering the behavior. 
 
Instead of moving “8” to the rax register, change the code to move “9” into the ax register and confirm that 
the jump to “JUMP_ZERO” tag gets executed. 
 
Note that the Jump instructions do not change the value of the flags register and so we can have multiple 
conditional jumps subsequent to the compare instruction. 
 
#=============================================================== 

# File:   Sample4.s 

# Assemble:  gcc -c Sample4.s 

# Link:   ld Sample4.o -o Sample4 

# Run:   ./Sample4 

#=============================================================== 

 

 

.global _start 

   

.text 

 

_start:  

  mov  $8, %rax 

  mov  $9, %rbx 

  cmp  %rax, %rbx 

  je  JUMP_ZERO 

  jne  JUMP_NOT_ZERO 

 

JUMP_ZERO: 

               

  mov     $1,    %rax                    

  mov     $1,    %rdi                 

  mov     $zeroMsg,   %rsi             

  mov     $zeroMsgLen,  %rdx                    

  syscall  

  jmp  EXIT 

      

                

JUMP_NOT_ZERO:       

   

               mov  $1,    %rax 

               mov  $1,    %rdi 

               mov  $nonZeroMsg, %rsi 

               mov  $nonZeroMsgLen, %rdx 

  syscall 

 

EXIT:     

               #exit(0) 

               mov  $60,   %rax 

               xor  %rdi,    %rdi 

               syscall 

  

#=============================================================== 

  

.data 

 CR    =   13 

 LF    =   10 
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 zeroMsg:  .ascii   "Zero Message" 

 CR_LF_1:  .byte  CR, LF  

 zeroMsgLen  =   .-zeroMsg 

 

 nonZeroMsg:  .ascii   "Non Zero Message" 

 CR_LF_2:  .byte  CR, LF   

 nonZeroMsgLen =   .-nonZeroMsg 

  

#=============================================================== 
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2.4 – Unsigned Jumps (JA, JAE, JB, JBE) 
 
The Unsigned jumps use the ZERO and CARRY flags. 
 
Jump if Above (“JA”) instruction jumps to the tag provided in the operand if both the ZERO flag and the 
CARRY flag are not set. If the ZERO flag is set, we know the numbers used in the last compare were equal. 
If the CARRY flag was set we know the last compare involved subtracting a larger number from a smaller 
number. If neither of these flags were set, the last compare involved subtracting a smaller number from a 
larger number. In this case the “JA” instruction will jump to the tag provided in the operand.  
 
Similarly Jump if Above or Equal (“JAE”) causes a jump if either the Zero flag is set or if CARRY flag is not 
set. 
 
Jump if Below (“JB”) instruction jumps to the tag provided in the operand if the ZERO flag is not set but the 
CARRY flag is set. 
 
Jump if Below or Equal (“JBE”) causes a jump if either the Zero flag is set or if the CARRY flag is set. 
 
Another way to look at these instructions is to consider a compare between unsigned numbers. If the first 
number is equal to the second number, the ZERO flag is set. So both the “JAE” and “JBE” will cause a jump 
in this case. 
 
If the first number is greater than the second number, both the ZERO flag and the CARRY flag are not set. 
In this case both the “JA” and “JAE” instructions will cause a jump. 
 
If the first number is less than the second number, the ZERO flag is not set, but the CARRY flag is set. In 
this case both the “JB” and “JBE” will cause a jump. 
 
Hence these jump instructions are designed to compare unsigned numbers. 
 
In the sample below change the values in the ax and bx register before the compare instruction and try and 
explain why it is not possible to jump to the “JUMP_BELOW_EQUAL” tag irrespective of the values used in 
ax and bx. 
 
 
#=============================================================== 

# File:   Sample5.s 

# Assemble:  gcc -c Sample5.s 

# Link:   ld Sample5.o -o Sample5 

# Run:   ./Sample5 

#=============================================================== 

 

 

.global _start 

   

.text 

 

_start:  

  mov  $8, %rax 

  mov  $9, %rbx 

  cmp  %rax, %rbx 

  ja  JUMP_ABOVE  

  jae  JUMP_ABOVE_EQUAL 

  jb  JUMP_BELOW 

  jbe  JUMP_BELOW_EQUAL 

 

JUMP_ABOVE: 

                 

  mov     $1,    %rax                    

  mov     $1,    %rdi                 

  mov     $jumpAboveMsg, %rsi             

  mov     $JA_MsgLen,  %rdx                    
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  syscall  

  jmp  EXIT 

                

JUMP_ABOVE_EQUAL:       

   

               mov  $1,    %rax 

               mov  $1,    %rdi 

               mov  $jumpAboveEqual,%rsi 

               mov  $JAE_MsgLen, %rdx 

  syscall 

  jmp  EXIT 

 

JUMP_BELOW: 

                 

  mov     $1,    %rax                    

  mov     $1,    %rdi                 

  mov     $jumpBelowMsg, %rsi             

  mov     $JB_MsgLen,  %rdx                    

  syscall  

  jmp  EXIT 

                

JUMP_BELOW_EQUAL:       

   

               mov  $1,    %rax 

               mov  $1,    %rdi 

               mov  $jumpBelowEMsg, %rsi 

               mov  $JBE_MsgLen, %rdx 

  syscall     

     

EXIT:     

                #exit(0) 

                mov  $60,   %rax 

                xor  %rdi,    %rdi 

                syscall 

  

#=============================================================== 

.data 

 CR  =  13 

 LF  =  10 

  

 jumpAboveMsg: .ascii   "Jump Above" 

   .byte  CR, LF  

 JA_MsgLen =  .-jumpAboveMsg 

 

 jumpAboveEqual:.ascii   "Jump Above or Equal" 

     .byte CR, LF   

 JAE_MsgLen =  .-jumpAboveEqual 

  

 jumpBelowMsg: .ascii   "Jump Below" 

   .byte  CR, LF   

 JB_MsgLen =  .-jumpBelowMsg 

  

 jumpBelowEMsg: .ascii   "Jump Below or Equal" 

   .byte  CR, LF   

 JBE_MsgLen =  .-jumpBelowEMsg  

  

#=============================================================== 
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2.5 – Signed Jumps (JG, JGE, JL, JLE) 
 

The Signed jumps use the SIGN, ZERO and OVERFLOW flags. 
 
Jump if Greater (“JG”), Jump if Greater or Equal (“JGE”), Jump if Less (“JL”) and Jump if Less or Equal 
(“JLE”) are very similar to the “JA”, “JAE”, “JB”, “JBE” instructions respectively. However these apply to 
signed numbers. 
 
The sample below shows the use of signed jumps. 
 
#=============================================================== 

# File:   Sample6.s 

# Assemble:  gcc -c Sample6.s 

# Link:   ld Sample6.o -o Sample6 

# Run:   ./Sample6 

#=============================================================== 

 

 

.global _start 

   

.text 

 

_start:  

   mov  $-4, %rax 

   mov  $-8, %rbx 

   cmp  %rax, %rbx  #%rbx - %rax 

   jg  JUMP_GREATER  

   jge  JUMP_GREATER_EQUAL 

   jl  JUMP_LESS 

   jle  JUMP_LESS_EQUAL 

 

JUMP_GREATER: 

   mov     $1,    %rax                    

   mov     $1,    %rdi                 

   mov     $jumpGreaterMsg,%rsi             

   mov     $JG_MsgLen,  %rdx                   

        

   syscall  

   jmp  EXIT 

                

JUMP_GREATER_EQUAL:       

                 mov  $1, %rax 

                 mov  $1, %rdi 

                 mov  $jumpGreaterEq, %rsi 

                 mov  $JGE_MsgLen, %rdx 

   syscall 

   jmp  EXIT 

 

JUMP_LESS:  

   mov     $1,   %rax                    

   mov     $1,   %rdi                 

   mov     $jumpLessMsg, %rsi             

   mov     $JL_MsgLen,  %rdx                   

   syscall  

   jmp  EXIT 

                

JUMP_LESS_EQUAL:       

                 mov  $1, %rax 

                 mov  $1, %rdi 

                 mov  $jumpLessEMsg, %rsi 

                 mov  $JLE_MsgLen, %rdx 

   syscall     

     

EXIT:     

                #exit(0) 

                mov  $60, %rax 

                xor  %rdi, %rdi 
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                syscall 

  

#=============================================================== 

  

.data 

 CR    =   13 

 LF    =   10 

  

 jumpGreaterMsg: .ascii   "Jump Greater" 

     .byte  CR, LF  

 JG_MsgLen  =   .-jumpGreaterMsg 

 

 jumpGreaterEq: .ascii   "Jump Greater Equal" 

     .byte  CR, LF   

 JGE_MsgLen  =   .-jumpGreaterEq 

  

 jumpLessMsg: .ascii   "Jump Less" 

     .byte  CR, LF   

 JL_MsgLen  =   .-jumpLessMsg 

  

 jumpLessEMsg: .ascii   "Jump Less Equal" 

     .byte  CR, LF   

 JLE_MsgLen  =   .-jumpLessEMsg  

  

#=============================================================== 
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2.6 – Other Jumps (JC, JNC, JO, JNO, JS, JNS, JCXZ) 

 
In addition to the Unconditional, Zero, Unsigned and Signed jumps, there are three other jumps that target 
specific flags. 
 
Jump if Carry (“JC”) executes a jump if the CARRY flag is set. Similarly Jump if No Carry (“JNC”) jumps if 
the CARRY flag is not set. 
 
Jump if Overflow (“JO”) executes a jump if the Overflow flag is set. Similarly Jump if No Overflow (“JNO”) 
jumps if the Overflow flag is not set. 
 
Jump if Sign (“JS”) executes a jump if the Sign flag is set. Similarly Jump if No Sign (“JNS”) jumps if the Sign 
flag is not set. 
 
Yet another jump instruction that can be very useful in implementing a loop with a specific number of 
iterations is the Jump if RCX Zero (“JRCXZ”) instruction.  
 
Below is a sample showing how the “JRCXZ” instruction can be used to implement a loop. Note that I have 
used three new instructions in this sample – “PUSH”, “POP” and “DEC”. 
 
The “PUSH” and “POP” instructions are mechanisms to save data on the stack. In the sample below, the 

value of the “RCX” register could potentially be overwritten. Hence I saved its value on the stack with the 
“PUSH” instruction and later restored it with the “POP” instruction. 
 
The “PUSH” instruction effectively translates to the following sub instructions; 
 

sub $8, %rsp 
mov  <quad data to be saved>, (%rsp) 
 

First we decrement the stack pointer (note the stack grows to lower addresses), then we save the data in the 
new location of the stack pointer. We will talk more about the indirect addressing mode (the parenthesis 
around %rsp) later on. 
 
The “POP” instruction is the inverse of the “PUSH”. The following sub instructions effectively sum up the 
“POP instruction. 
 
  mov (%rsp), <quad data to be retrieved> 
  add %rsp, $8 
 
The decrement (“DEC”) instruction simply subtracts 1 from the operand. Similarly the increment (“INC”) 

instruction adds 1 to the operand. 
 
#=============================================================== 

# File:   Sample7.s 

# Assemble:  gcc -c Sample7.s 

# Link:   ld Sample7.o -o Sample7 

# Run:   ./Sample7 

#=============================================================== 

 

 

.global _start 

   

.text 

 

_start:  

   mov $10, %rcx 

 

START_LOOP: 

   jrcxz EXIT 

   push %rcx 

     

   mov     $1, %rax                    
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   mov     $1,  %rdi                 

   mov     $loopMsg, %rsi             

   mov     $loopeMsgLen,  %rdx                   

        

   syscall  

     

   pop  %rcx 

   dec  %rcx 

     

   jmp  START_LOOP   

     

EXIT:     

                 #exit(0) 

                 mov  $60, %rax 

                 xor  %rdi,  %rdi 

                 syscall 

  

#=============================================================== 

  

.data 

 CR   =   13 

 LF   =   10 

  

 loopMsg:  .ascii   "Looping..." 

    .byte  CR, LF  

 loopeMsgLen  =  .-loopMsg 

 

  

#=============================================================== 
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3.0 – Loop Instructions 
 
In the previous two sections we learnt two constructs in writing code - sequential processing and the ability 
to jump to addresses that are not necessarily in sequence. In this section we introduce a third construct in 
programming called looping. 
 
Loop instructions allow the user to repeatedly execute a set of instructions until one or more conditions are 
met. In some respects a loop instruction is a special case of a Jump instruction, but the construct is powerful 
enough to warrant a dedicated section. Besides, most processors including the x86 processor, have 
specialized instructions for looping.    
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3.1 – Basic Loop (LOOP) 
 
Our knowledge of the Jump if Not Zero (“JNZ”) and jump if Zero (“JZ”) instructions will allow us to implement 
a very basic loop. 
 
The sample below is a slight modification of the sample in the previous section. There are two loops in this 
sample.  
 
In the first loop I have replaced the “JCXZ” instruction with a JNZ. I am exploiting the fact that the “DEC” 
instruction sets the ZERO flag.  
 
The second loop introduces the “LOOP” instruction. The “LOOP” instruction decrements the CX register by 

one and loops to the operand label if the CX register is not zero. Note that it does not alter the flags register. 
 
 
#=============================================================== 

# File:   Sample8.s 

# Assemble:  gcc -c Sample8.s 

# Link:   ld Sample8.o -o Sample8 

# Run:   ./Sample8 

#=============================================================== 

 

 

.global _start 

   

.text 

 

_start:  

   mov  $10, %rcx 

 

START_LOOP1: 

 

   #This loop uses a "dec" and "jnz" 

   push %rcx 

     

   mov     $1,    %rax                    

   mov     $1,    %rdi                 

   mov     $loop1Msg,  %rsi             

   mov     $loop1MsgLen,  %rdx                   

        

   syscall  

     

   pop  %rcx 

   dec  %rcx 

   jnz  START_LOOP1 

 

   #We have come out of the first loop 

   #Reinitialize %rcx 

   mov  $10, %rcx 

 

START_LOOP2: 

 

   #This loop replaces the "dec" and "jnz" with a "loop" 

   push %rcx 

    

   mov     $1,    %rax                    

   mov     $1,    %rdi                 

   mov     $loop2Msg,  %rsi             

   mov     $loop2MsgLen,  %rdx                   

        

   syscall  

    

   pop  %rcx 

   loop START_LOOP2 
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EXIT:     

                #exit(0) 

                mov  $60,   %rax 

                xor  %rdi,    %rdi 

                syscall 

  

#=============================================================== 

  

.data 

 CR    =   13 

 LF    =   10 

  

 loop1Msg:  .ascii   "Loop 1..." 

     .byte  CR, LF  

 loop1MsgLen  =   .-loop1Msg 

 

 loop2Msg:  .ascii   "Loop 2..." 

     .byte  CR, LF  

 loop2MsgLen  =   .-loop2Msg  

#=============================================================== 
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3.2 – Other Loops (LoopE,LoopZ,LoopNE,LoopNZ) 
 
The Loop if Zero (“LOOPZ”) or Loop if Equal (“LOOPE”) instructions are similar to the “LOOP” instruction 

with one additional condition – they only loop if the ZERO flag is set.  
 
The Loop if Not Zero (“LOOPNZ”) or Loop if Not Equal (“LOOPNE”) instructions are also similar to the 
“LOOP” instruction with the additional condition that they only loop if the ZERO flag is not set. 

 
These instructions are handy in cases where the number of loops is not always a constant but rather based 
on a condition.  
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4.0 – Calling Procedures 

In the previous sections we discussed Sequential, Jump and Loop instructions. The main benefits of the 
latter two programming constructs are that it allows a coder to reuse code that is written for generic 
purposes (eg. reading user input).  
 
While a Jump instruction allows a coder to jump to any location within the code, it does not provide a 
mechanism to return to the location from which the Jump occurred once the generic code is executed. This 
brings us to the fourth programming construct – Procedures. 
 
Procedure calling is designed specifically to remedy the problem of knowing where and in what state to 
return to, once the generic code is executed. 
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4.1 – Calling a Procedure and Returning 
 
A Procedure is essentially a set of instructions to do a specific task. For example in most of the samples 
thus far we had a need to display an output. We would have been more effective to isolate that code to a 
procedure and call the procedure each time we needed to display an output, rather than duplicate the code 
each time. 
 
In the sample below, I have written a procedure called “StrOut” to display a string. The caller is expected to 
pass in the offset to the string to be displayed in the “rax” register and the count of the number of characters 
in the string in the “rbx” register. These are referred to as the “input” parameters to the procedure. If the 
procedure was expected to return a value back to the caller, that would be referred to as an “output” 
parameter. By convention, output parameters are passed in the “rax” register. 
 
The “CALL” instruction does 2 things – it saves the RIP register on the stack and jumps to the procedure. 

 
The “RET” instruction pops the previously saved IP register. 

 
If the procedure is going to save anything on the stack (and it almost always will), it is very 
important that it pops everything back before calling the “RET” instruction, else an invalid value will 
be popped into the IP register. 

 
 
#=============================================================== 

# File:   Sample9.s 

# Assemble:  gcc –g -c Sample9.s 

# Link:   ld Sample9.o -o Sample9 

# Run:   gdb ./Sample9 (use the ‘s’ step command to  

#   walk every line of code and inspect registers) 

#=============================================================== 

 

 

.global _start 

.global _start 

   

.text 

 

_start:  

 

  mov  $msgString1, %rdi 

  mov  $msgStringLen1, %rsi     

  call StrOut 

 

  mov     $msgString2, %rsi             

  mov     $msgStringLen2, %rdx    

  mov     $1,    %rax                    

  mov     $1,    %rdi                             

  syscall      

     

     

EXIT:     

                #exit(0) 

                mov  $60,   %rax 

                xor  %rdi,    %rdi 

                syscall 

 

     

 StrOut:   

 

  #Prologue 

  push %rbp   #save rbp 

  mov  %rsp, %rbp #save rsp in rbp 

  sub  $4,  %rsp #save area in stack for locals 

  push %rsi   #save registers we place to use 

  push %rdx 

  push %rax 
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  push %rdi 

  pushf     #push flags register 

 

    

  #Function code            

  mov     %rsi,  %rdx   

  mov     %rdi, %rsi      

  mov     $1,  %rax                    

  mov     $1,  %rdi                              

    

  syscall  

     

  #Epilogue 

  popf    #pop flags register 

  pop %rdi   #restore the previously stored registers 

  pop %rax 

  pop %rdx 

  pop %rsi 

  mov %rbp, %rsp #remove area for locals 

  pop %rbp   #restore rbp 

  ret     

  

  

#=============================================================== 

  

.data 

 CR   =   13 

 LF   =   10 

  

 msgString1:  .ascii   "In a function call!" 

    .byte  CR, LF  

 msgStringLen1 = .-msgString1 

  

 msgString2:  .ascii   "Out of function call!" 

    .byte  CR, LF  

 msgStringLen2 = .-msgString2  

 

#=============================================================== 
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5.0 – Addressing Modes 
Accessing data in registers and in memory is an essential part of assembler programming. Every processor 
allows for different methods to specify source and destination addresses for various instructions.  
 
In this section we will cover the most common addressing modes used by the x64 processor. 
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5.1 – Register Addressing Mode 
 
This involves accessing data in registers. It is a very common and straight forward technique and we have 
used it in almost all the samples thus far. The following is an example of Register Addressing mode. 
 

mov  %rax, %rbx 
 
Here we are moving the contents of the “RAX” register into the “RBX” register. 

5.2 – Immediate Addressing Mode 
 
When a data value is a constant, it can be made available as an operand. The following is an example of an 
Immediate Addressing Mode. 
 
    mov $9, %rcx 
 
This instruction moves “9” to the “RCX” register.  

5.3 – Direct Addressing Mode 
 
If we wanted to access memory at a known address, we could enclose the known address in parenthesis 
and offer that as our operand. The following is an example of direct addressing. 
 
    mov  (0x4000b0), %rax 
 
Here we move the contents at memory address 0x4000b0 into the RAX register. 
 

5.4 – Register Indirect Addressing Mode 
 
Sometimes a register contains an address of a memory location. In these cases we can access the value at 
that address by enclosing the register in parenthesis and use that as our operand. 
 
   mov  $0x4000b0, %rax 
   mov  (%rax), %rbx 
 
Here we move the contents of memory whose address is in the “RAX” register to the “RBX” register.   
 

5.5 – Register Indirect Indexed Addressing Mode 
 
The register indirect addressing mode can be extended to access elements of an array for example, by 
using the following syntax; 
 
   mov  $0x4000b0, %rax 
   mov  0x10(%rax), %rbx 
    
 
This will fetch the contents of memory at the address defined by the “RAX” register plus 0x10 and move it to 
RBX. 
 
Other variations include the following: 
 
  mov (%rax,%rbx), %rcx     Mem[%rax+%rbx] -> %rcx 
  mov (%rax, %rbx, 5), %rcx    Mem[%rax + 5*%rbx] -> %rcx 
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  mov 0x10(%rax, %rbx, 5), %rcx   Mem[%rax + 5*%rbx + 40]  -> %rcx 
 
 
The most general form is as follows: 
 

Displacement(baseRegister, indexRegister, scale)  
 
 

  
 

 
Mem [baseRegister + (Scale * indexRegister) + Displacement] 
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6.0 – More complex Instructions 

In this last section on assembler programming, we will study a few more complex instructions available to us 
in the x64 processor.  
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6.1 – Bit Operations 
 
OR 

 
The “OR” instruction is used to turn on individual bits in the destination operand based on a mask that is 
provided as the source operand. 
 

or  $0x0f, %rax 

 
In the example above, we ensure that the lowest 4 bits in the RAX register are set. 
 
AND 

 
The “AND” instruction is used to turn off individual bits in the destination operand based on a mask that is 
provided as the source operand. 
 

and  $0x0f, %rax 

 
In the example above, only the lowest 4 bits of the RAX register are preserved. All other bits are set to zero.  
 
XOR 

 
The Exclusive OR operation inverts all the bits in the destination operand, for which the corresponding mask 
bits are set.  
 

xor  $0x0f, %rax 

 
 
TEST 

 
The “TEST” instruction is very similar to the “AND” operation with the exception that it does not alter the 
destination operand. Instead it only sets the flags register to indicate if the operation resulted in a zero or 
non-zero result. This can then be used by the JUMP instructions. The “TEST” is the BOOLEAN equivalent of 
a “CMP” instruction. 
 
SHL 

 
The Shift Left (“SHL”) instruction shifts the bits in the destination operand to the left. The number of bits to 
be shifted is provided as the source operand. During each 1 bit left shift, the bit shifted out of the most 
significant bit is placed in the Carry bit of the flags register and a bit ‘0” is shifted into the least significant bit. 
 
Note that shifting left by 1 bit is the equivalent of multiplying by 0x02. 
 
SHR 

 
The Shift Right (“SHR”) instruction shifts the bits in the destination operand to the right. The number of bits 
to be shifted is provided as the source operand. During each 1 bit right shift, the bit shifted out of the least 
significant bit is placed in the Carry bit of the flags register and a bit “0” is shifted into the most significant bit. 
 
Note that shifting right by 1 bit is the equivalent of unsigned division by 0x02. 
 
SAR 

 
The Shift Arithmetic Right (“SAR”) is similar to the “SHR” instruction with the exception that that the most 
significant bit will always remain unchanged. Since the most significant bit is the sign bit, this instruction can 
be useful for signed division. 
 
ROL 
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The Rotate Left (“ROL”) instruction rotates the bits in the destination operand in the counter clockwise 
direction. The number of bit shifts is defined by the source operand. During each shift to the left, the most 
significant bit defines the value of the Carry flag. 
 
ROR 

 
The Rotate Right (“ROR”) instruction rotates the bits in the destination operand in the clockwise direction. 
The number of bit shifts is defined by the source operand. During each shift to the right, the least significant 
bit defines the value of the Carry flag. 
 
RCL 

 
The Rotate Left Through Carry (“RCR”) is similar to the ROL instruction with the exception that the bits are 
rotated counter clockwise through the Carry Flag. 
 
RCR 

 
The Rotate Right Through Carry (“RCR”) is similar to the ROR instruction with the exception that the bits are 
rotated clockwise through the Carry Flag. 
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6.2 – Arithmetic Operations 
 
ADD 

 
The Add instruction adds the source and destination operands and places the result in the destination 
operand. 
 
ADC 

 
The Add with Carry (“ADC”) instruction adds the source, destination and the “Carry Flag” bit and places the 
result in the destination operand. 
 
SUB 

 
The Subtract (“SUB”) instruction subtracts the source from the destination and places the result in the 
destination operand. 
 
SBB 

 
The Subtract with Borrow (“SBB”) subtracts the sum of the source and the “Carry flag” from the destination 
and places the result in the destination operand. 
 
CBW 

 
The Convert Byte to Word (“CBW”) instruction uses the input BYTE in the AL register and converts it to a 
WORD in the AX register.  
 
This is a useful instruction for converting both signed and unsigned BYTEs to WORDs. It effectively 
performs a sign extension by ensuring that the most significant bit in the BYTE is replicated in all the extra 
bits provided by the WORD. 
 
CWD 

 
The Convert Word to Double (“CWD”) instruction is very similar to the “CBW” instruction. It takes the AX 
register as the input WORD and converts it to a DWORD in DX and AX registers where DX has the high 
WORD and AX has the lower WORD. 
 
 
STC, CLC and CMC 

 
Sometimes you may want to directly control the value of the Carry flag when performing arithmetic 
operations.  
 
The Set Carry (“STC”) allows you set the Carry flag. 
 
The Clear Carry (“CLC”) allows you to clear the Carry flag. 
The Complement Carry (“CMC”) allows you to inverts the current value of the Carry flag. 
 
LEA 

 
The Load Effective Address (“LEA”) instruction allows you to find the address offset of a memory variable. 
We used this in a number of our previous samples to find the address of our input buffer. 
 
To use the “OFFSET” directive however, the address should be available at assembly time. If the address is 
only available at runtime, the “LEA” instruction must be used. In the example below, the contents of BX is 
added to the contents of SI and that result is added to 7 to give the offset that is placed in the AX register. 
Since the contents of BX and SI are only available at runtime, the “LEA” instruction must be used. 
 
While the “LEA” instruction is generally used for address calculation, there is no reason why it can’t be used 
for arithmetic operations. 
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6.3 – Interrupt Operations 
 
STI 

 
The Set Interrupt (“STI”) instruction enables interrupts by setting the Interrupt Flag (IF) bit in the flags 
register.  
 
CLI 

 
The Clear Interrupt (“CLI”) instruction disables interrupts by clearing the Interrupt Flag (IF) bit in the flags 
register. 
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6.4 – String Operations 
 
MOVSB 

 
The Move Single Byte (“MOVSB”) instruction is a complex instruction that allows you to move a byte from a 
source address to a destination address. Effectively it does the following: 
 
mov (%si), %al ; copySI to al 
mov %al, (%di) ; move al to DI 
inc/dec %rsi  ; increment or decrement SI based on Direction flag 
inc/dec %rdi  ; increment or decrement DI based on Direction flag 

 
As you might guess, before using the “MOVSB” instruction, you need to ensure that ES, SI, DI and the 
Direction flag is set up correctly.  
 
Note: If the Direction Flag is zero, RDI and RSI are incremented, else they are decremented. 
 
STD and CLD 

 
As noted in the “MOVSB” instruction, the value of the direction flag dictates if SI and DI are incremented or 
decremented by the “MOVSB” instruction.  
 
The Set Direction (“STD”) instruction sets the Direction flag. 
 
The Clear Direction (“CLD”) clears the Direction flag. 
 
MOVSW 

 
The “MOVSW” instruction is very similar to the “MOVESB” instruction but works on a WORD instead of a 
BYTE. 
 
REP MOVSB 

 
The Repeat MOVSB (“REP MOVSB”) instruction allows you to repeat the move instruction for a number of 
iterations defined by the CX register. Think of it as a loop instruction that decrements the CX register in each 
iteration and jumps out of the loop when CX hits zero. 
 
REP MOVSW 

 
Similar to “REP MOVSB”, but works on WORDs instead of BYTEs. 
 
STOSB and STOSW 

 
The Store String by Byte (“STOSB”) and Store String by Word (“STOSW”) allow you to store the value in a 
register into a memory address. Effectively, these instructions do half the work done by the 
MOVSB/MOVSW instructions – they move data from register to memory instead of memory to memory. 
 
The STOSB instruction saves the byte in the AL register to the memory address defined by ES:[DI] and then 
increments or decrements the DI register by one, based on the Direction Flag. 

 
The STOSW instruction saves the word in the AX register to the memory address defined by ES:[DI] and 
then increments or decrements the DI register by two, based on the Direction Flag. 

 
REP STOSB and REP STOSW 

 
The Repeat (“REP”) qualifier can also be used with the STOSB and STOSW instructions to repeat the 
instructions by a count defined by the RCX register. 
 
LODSB and LODSW 
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The Load String Byte (“LODSB”) and Load String Word (“LODSW”) allow you to load the value in a memory 
location into a register. These instructions do the other half of the work done by the MOVSB/MOVSW 
instructions. 
 
The LODSB instruction loads a byte from DS:[SI] to the AL register and then increments or decrements the 
DI register by one, based on the Direction Flag. 

 
The LODSW instruction loads a word from the DS:[SI] to the AX register and then increments or decrements 
the DI register by two, based on the Direction Flag. 

 
CMPSB 

 
The Compare String Byte (“CMPSB”) instruction compares two memory byte locations defined by DS:[SI] 
and ES:[DI]. It then sets the flags to indicate the result of the comparison and then increments or 
decrements the SI and DI registers, depending on the Direction Flag. 
 
REPE and REPNE 

 
The Repeat while Equal (“REPE”) and Repeat while Not Equal (“REPNE”) can be used in conjunction with 
the “CMPSB” instruction to compare a number of bytes defined by the CX register. 
 
SCASB 

 
The Scan String for Byte (“SCASB”), compares the BYTE in the AL register with the BYTE in ES:[DI] and 
sets the flags to reflect this comparison. It then increments or decrements the DI register, depending on the 
Direction Flag. 
 
The REPE and REPNE qualifiers can also be used with “SCASB”. 
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7.0 – Conclusion 

  

Every programming language has a set of constructs and a set of instructions. In the x64 assembler 
programming language we studied the following five constructs: 
 

 Sequential processing 

 Jumps 

 Loops 

 Procedure calls 

 Addressing Modes 
 
Along the way, we also came across several x64 instructions that allow us to do bit manipulations, arithmetic 
operations and string operations.  
 
The constructs of a programming language are the equivalent of grammar, and instructions are the 
equivalent of vocabulary, in a spoken language. As with spoken languages, fluency in constructs and 
instructions come with continued use of the language. Hence it is recommended that the student practice 
the concepts discussed in this set of notes by writing many more applications. 
  
 
 

 


