
Accelerated Learning Series

(www.ALearnOnline.com – A site dedicated to

education)

Modules in Computer Science &

Engineering

X64 Assembler Programming

A set of notes detailing fundamental concepts in low level Programming.

Author: SKG.

Dec 2007.

http://www.alearnonline.com/

Version 1.1 2

Revision History

Version 1.0 (Dec 2007)

 First version created

Version 1.1 3

Revision History

 Version 1.0: First version created – Dec 2007

 Version 1.1: Adapted for a Linux Bash Environment – Sept 2017

Version 1.1 4

Table of Contents.

Preface ___ 5

1.0 – x64 Architecture ___ 6

1.1 – x64 Register set __ 7

1.2 – Assembler Directives __ 9

1.3 – Your First Computer Program – “Hello World!” ___________________________ 11

1.4 – Debugging a program __ 13

1.5 – Interacting with the User ___ 15

2.0 – Jump Instructions ___ 17

2.1 – Unconditional Jumps (JMP) __ 18

2.2 – Compare instruction (CMP) __ 20

2.3 – Zero or Equality Jumps (JZ, JE, JNZ, JNE) _______________________________ 22

2.4 – Unsigned Jumps (JA, JAE, JB, JBE) _____________________________________ 24

2.5 – Signed Jumps (JG, JGE, JL, JLE) _______________________________________ 26

2.6 – Other Jumps (JC, JNC, JO, JNO, JS, JNS, JCXZ) __________________________ 28

3.0 – Loop Instructions ___ 30

3.1 – Basic Loop (LOOP) __ 31

3.2 – Other Loops (LoopE,LoopZ,LoopNE,LoopNZ)_____________________________ 33

4.0 – Calling Procedures __ 34

4.1 – Calling a Procedure and Returning _______________________________________ 35

5.0 – Addressing Modes ___ 37

5.1 – Register Addressing Mode __ 38

5.2 – Immediate Addressing Mode __ 38

5.3 – Direct Addressing Mode __ 38

5.4 – Register Indirect Addressing Mode _______________________________________ 38

5.5 – Register Indirect Indexed Addressing Mode _______________________________ 38

6.0 – More complex Instructions __ 40

6.1 – Bit Operations __ 41

6.2 – Arithmetic Operations ___ 43

6.3 – Interrupt Operations __ 44

6.4 – String Operations ___ 45

7.0 – Conclusion ___ 47

Version 1.1 5

Preface

As I started working on this set of notes, I was confounded by many questions related to the most fruitful
approach to take. To start with it is fair to question the relevance of Assembler level programming in the
midst of the more popular and pervasive high level programming languages. Once one justifies its
relevance, there is still the question of which processor to choose to illustrate the concepts in Assembler
programming.

Over the last two decades I have observed the number of Assembler programmer positions in the industry
dwindle substantially. Today there are probably only two computer industries that exploit the skills of
Assembler programmers. The first would be those who write very specialized software that cannot be
adequately generated by generic compilers. The other industry would be those who need to understand and
resolve difficult problems that hinge on the hardware in which the problems manifest. Besides these two
industries however, the average high level computer programmer also benefits, to a lesser extent
admittedly, from knowledge of Assembler programming in understanding shortcomings of a compiler and
sometimes even revealing faults in their high level code. Even if you find that you will never program a
computer at the Assembler level, a preliminary course in Assembler programming primes the student for
better grasping constructs in higher level languages.

Since the Personal Computer (PC) has become ubiquitous and since the PC is based on the Intel x86

processor, it seemed convenient to use the x86 architecture for illustration here.

The x86 processor operates in 64-bit mode in most modern personal computers. Hence I have adapted an
earlier set of notes that used the 16-bit mode into the 64-bit mode. The samples in these notes require the
GAS assembler.

Version 1.1 6

1.0 – x64 Architecture

The general purpose computer architecture prepared us with an understanding of the various components
that make up a computer. Hence we are familiar with concepts surrounding the CPU, Registers, Memory,
data buses, address buses, instruction mnemonics and operands. In this section we delve a little deeper into
a specific processor type - namely the x64 processor.

The emphasis in this section however, will be to expose the student to the mechanics of writing assembler
code, converting that to machine code and finally executing and debugging the code.

Version 1.1 7

1.1 – x64 Register set

As discussed in the General Purpose Computer Architecture notes, Registers are very fast access memory
locations in the CPU.

The x64 processor has the following types of Registers:

64-bit General Purpose Registers – RAX, RBX, RCX, RDX, RBP, RDI, RSP and R8 to R15
Pointer Registers – RIP, RSP
Flags Registers – RFLAGS
Floating Point Registers – FPR0 to FPR7

In addition to the above there are segment registers (not commonly used in x64), Control registers, memory
management registers, debug registers, virtualization registers, performance registers etc.

General Registers:

A byte is defined as 8 bits, a word is 16 bits, a double word is 32 bits, a quadword is 64 bits and a double
quadword is 128 bits. Intel uses the “little endian” format where lower significant bytes are stored in lower
memory addresses.

For the first eight registers, replacing “r” with “e” will allow you to access the double words at the lower
significant addresses.

For the RAX, RBX, RCX, and RDX registers removing the “r” will allow you to access the words at the lower
significant addresses.

Index Registers:

Some computer instructions operate on contiguous memory locations starting at a particular address and for
a certain size. A common example would be an instruction that copies a string (an array of characters that
often ends with a NULL character) from one location in memory to another location. This instruction would
need the start address of the source string, the length of the source string and the start address of the
destination string. The instruction can then index with reference to the start address of the source and

destination locations to access each subsequent memory location.

The “RSI” and “RDI” are both 64-bit registers that are commonly used as source and destination index
registers.

Pointer Registers:

“RSP” is the 64-bit Stack Pointer register.

“RIP” is the 64-bit Instruction Pointer register.

“RBP” is the 64-bit Base Pointer register, that is commonly used by functions to save the “RSP” register

before reusing the “RSP” register to allocate memory on the stack of local variables.

Flags Register:

The CPU stores the results of certain operations in the “RFLAGS” register. The following defines the 8
commonly used flag bits in the flags register:

Symbol Bit Name Set if

CF 0 Carry Operation generated a carry or borrow

PF 2 Parity Last byte has an even number of 1’s, else 0

AF 4 Adjust Carry or borrow out of the four least significant bits (BCD support)

Version 1.1 8

ZF 6 Zero Result was 0

SF 7 Sign Most significant bit of results is 1

IF 9 Interrupt Interrupt Enable

DF 10 Direction Direction string instructions operate (increment or decrement)

OF 11 Overflow Overflow on signed operation

Common uses of registers:

RDI – Arg 1
RSI – Arg 2
RDX – Arg 3
RCX – Arg 4
R8 – Arg 5
R9 – Arg 6

RAX – return

RSP – stack pointer

RIP – instruction pointer

EFLAGS - flags

Version 1.1 9

1.2 – Assembler Directives

A computer program is nothing more than a set of instructions. Some of these instructions target the
software that converts the program to machine language. The rest of the instructions are meant to be
executed by the processor for which the program is written.

The software that coverts an assembly language program to machine language is called an Assembler.
The instructions directed at the assembler are referred to as Assembler directives. Since these directives

are Assembler specific, they will not apply to all Assemblers. In the discussion below, I am referring to the
GAS Assembler. Let us examine some common GAS Assembler directives.

Data Section Directive:

Most programs will need to use certain constant values throughout the program. It would be useful to refer to
these “constants” by name and define the constant just once and get the assembler to replace every

instance where that name is used with its constant value. This aids the programmer by having to change the
constant in only a single location instead of every location where it is used, should the constant value have
to change at some point.

The Data section serves this purpose. The following is an example of a data section:

.data

 CR = 13

 LF = 10

 msgStr: .ascii "Hello World!\n"

 msgStrpost: .byte CR, LF

 msgStrLen = .-msgStr

“.data” is a keyword known to the Assembler. It tells the Assembler that you intend to define initialized data
and constants in this section. “CR” is a coder friendly name for Carriage Return, while “LF” stands for Line
Feed. They have ASCII codes of 13 and 10 respectively. “msgStr” is a name to track the starting location of
the string we want to use. “msgStrLen” is a constant that defines the length of our string. Note how we add
the bytes for CR and LF to the end of our message string. In defining “msgStrLen”, the “.” indicates to the
assembler that you are referring to the current location in memory. Hence “. - msgStr” will give us the
number of bytes in the message string.

BSS Section Directive:

Every program will need some reserved memory to keep track of values that change from time to time. For
ease of use, we will give these memory locations unique names and will refer to them as “variables”.

Below is an example of the “.bss” Assembler directive to define memory locations for variables.

section .bss

 var1 resb 32

Here we are defining a variable called “var1” and reserving 32 bytes for it.

Code Section Directive:

The code segment is defined using the keyword “Segment” with the ‘text’ identifier as shown below.

section .text

 global main

 main:

Version 1.1 10

 ;write (1, message, 13)

 mov rax, 1

 mov rdi, 1

 mov rsi, message

 mov rdx, msgLen

 syscall

 ;exit(0)

 mov rax, 60

 xor rdi, rdi

 syscall

The “Code” segment contains the actual instructions that are intended to be executed by the processor.

The “mov” instructions are instructions known to the x64 processor. They are not assembler directives. “mov
rax, 1” is an instruction asking the processor to move “1” to the 64-bit “rax” register.

Operand Syntax:

$ - Constants start with $
% - Registers start with %
() - Parenthesis dereference addresses in registers of variables.

Version 1.1 11

1.3 – Your First Computer Program – “Hello World!”

A program is generally written using a text editor. If you don’t have a favorite editor, you can use Notepad++.

Type the following lines of code into your notepad editor, or copy and paste it into the editor.

#===

File: Sample1.s

Assemble: gcc -c Sample1.s

Link: ld Sample1.o –o Sample1

Run: ./Sample1

#===

Add the global directive so the symbol "_start" is made available

in the object code export table.

If the symbol is not in the export table at link time, the linker

will not know about it.

_start is the default entrypoint for an executable and if the linker

can see it, it will use that as the Entrypoint.

If you want a different entrypoint, you can use the -e link option.

Eg. ld -e main Sample1.o

.global _start

This is the section where the assembler assumes your code is located

.text

__start:

 # write(1, msgStr, msgStrLen)

 # "1" is the sys code for write.

 # Note the "$1" tells the assembler to use the value "1".

 mov $1, %rax

 # "1" is the stdout file handle.

 mov $1, %rdi

 # Address of string to output.

 # Note here we are passing a variable prefixed by "$".

 # The Assembler will replace $msgStr with the address of msgStr.

 mov $msgStr, %rsi

 # Number of bytes in msgStr.

 # Note here we are passing a constant.

 # Invoke operating system to do the write.

 mov $msgStrLen, %rdx

 # System call 60 is exit.

 syscall

 # exit(0)

 # We want return code 0.

 # Invoke operating system to exit.

 mov $60, %rax

 xor %rdi, %rdi

 syscall

This is the section where the assembler expects initialized data

Data types recognized include .byte (1 byte), .short (2 bytes), .long (4 bytes),

.string or .ascii (length based on length of string). Constants are defined

with the “=” sign.

.data

 CR = 13

 LF = 10

 msgStr: .ascii "Hello World!\n"

 msgStrpost: .byte CR, LF

https://notepad-plus-plus.org/download/v7.5.1.html

Version 1.1 12

 msgStrLen = .-msgStr

Save the file as “Sample1.asm” and use the following commands to assemble, link and run this code using
GAS…

gcc -c Sample1.s

ld Sample1.o –o Sample1

./Sample1

As an aside, note that there are two common file formats used for object and executable files – COFF and
ELF. COFF stands for Common Object File Format while ELF stands for Executable and Linking Format.
Microsoft Visual C++ compilers generate the COFF format while GCC generates the ELF format.

Version 1.1 13

1.4 – Debugging a program

Once you get through the Assembler and linker phase and create an executable file, there is always an urge
to run the program and see if it behaves as you expect it to. It is advisable to use a tool called a “debugger”

to walk through the code to ensure that the logic that is being executed is exactly what was intended. A
debugger allows you to walk over (trace) individual instructions and confirm the output of each instruction.

“gdb” is GNU debugger available on Linux. To load “Sample1.exe” in the debugger, type “gdb <filename>”

in the directory where sample1.exe is located.

You can now set a breakpoint at the start of the program (“main”) and run to the breakpoint…

Once you hit the breakpoint, you can disassemble the program and look at how the Assembler assembled
your code…

Note the code at offset +14. The Assembler is using the address of “msgStr”, whereas in the code in offset
+21, it is using the value of the constant “msgStrLen”.

Now look at the value of the rax register before you execute your “mov” instruction…

Version 1.1 14

Now set a breakpoint right after the first move instruction and step over the “mov” instruction and observe
the register again…

Learn some of the other command available in gdb to access your variables and get familiar with using the
debugger. It will prove to be the most valuable tool at your disposal. You can find some of the gdb
documentation here.

.

https://gcc.gnu.org/onlinedocs/gcc-3.3.5/gnat_ug_unx/Introduction-to-GDB-Commands.html

Version 1.1 15

1.5 – Interacting with the User

In almost any computer program, there is a need to get input from the user of the program. The program’s
behavior is often dependent on the input that is supplied by the user. In this section we will write a sample
that gets input from the user using the Standard Input.

The most efficient way to master any programming language is to practice writing your own sample
programs. Hence I encourage you to study the samples provided in each of these sections and attempt to
duplicate their behavior on your own by using the same or similar instructions.

Another very useful programming technique is to do incremental additions. For example, with the sample
below, you can first try and put up a prompt to the user. Then try and collect information from the user and
then finally try and display the received input. At each of these interim stages, assemble and link your
program to confirm that it is behaving as you would expect.

The only new construct that is introduced in the sample below is the use of the READ function code. This
code indicates to LINUX that you are asking it to read input from the user. The number of characters read by
LINUX is going to be available in the AX register. This is also referred to as the “return value”. In the x86
assembler, the return value from any call is usually passed using the AX register.

Once you have studied the following sample, assemble and link the sample using the commands provided in
the header of the sample.

You may observe that in the sample below, I have used the “xor ax, ax” instruction when I wanted to zero
the contents of a register. An “xor” instruction is an exclusive-or operation. So if you apply that operation to
the same register in the source and destination operand fields, you are bound to make the contents of the
register to be zero.

You may wonder why I chose an “xor” over a more direct “mov ax, 0” instruction. This has to do with
efficiency. In the older processors, a “mov” instruction from a memory to a register would use 4 clock cycles
of the CPU, whereas an xor usually cost only 2 clock cycles. Needless to say these sorts of savings are not
worth much (if anything at all) with the increased clock speeds and more efficient instructions of modern
processors.

#===

File: Sample2.s

Assemble: gcc -c Sample2.s

Link: ld Sample2.o –o Sample2

Run: ./Sample2

#===

.global _start

This is the section where the assembler assumes your code is located

.text

_start:

#write (1, promptMsg, msgLen)

 mov $1, %rax

 mov $1, %rdi

 mov $promptMsg, %rsi

 mov $promptMsgLen, %rdx

 syscall

 #read (0, inputBuffer, bufLen)

 mov $0, %rax

 mov $0, %rdi

 lea (inputBuffer), %rsi

 mov $bufLen, %rdx

 syscall

Version 1.1 16

 #Add and ! and CR to buffer

 lea (inputBuffer), %rsi

dec %rax

 movb $33, (%rax, %rsi, 1)

 inc %rax

 movb $CR, (%rax, %rsi, 1)

 inc %rax

 movb $LF, (%rax, %rsi, 1)

 inc %rax

 mov %rax, (nameLen)

 #write (1, Greetings, GreetingLen)

 mov $1, %rax

 mov $1, %rdi

 mov $Greetings, %rsi

 mov $GreetingLen, %rdx

 syscall

 #write (1, inputBuffer, nameLen)

 mov $1, %rax

 mov $1, %rdi

 mov $inputBuffer, %rsi

 mov nameLen, %rdx

 syscall

 #exit(0)

 mov $60, %rax

 xor %rdi, %rdi

 syscall

#===

.data

 CR = 13

 LF = 10

 bufLen = 100

 promptMsg: .ascii "Enter your name: "

 promptMsgLen = .-promptMsg

 CR_LF_1: .byte CR, LF

 Greetings: .ascii "Hello"

 GreetingLen = .-CR_LF_1

#===

This is the section where the assembler expects uninitialized data

.bss

 .lcomm inputBuffer, bufLen

 .lcomm nameLen, 4

Version 1.1 17

2.0 – Jump Instructions

In the previous section we gained the knowledge to write sequential instructions that let us get input from a
user and process it. While sequential instructions are the primary mechanism describing a set of steps, it
can be very limiting in our ability to reuse our code.

Imagine how difficult it would be if we had to explicitly write the code to read user input every time we
needed to get user input within a program. It would be so much easier if we could jump to the code that does
the reading of user input every time we need to get user input.

The construct of Jump instructions is designed to do just that. They allow the coder to move around the
program without the sequential processing limitation.

In this section we will study the common Jump instructions available in the x86 architecture.

Version 1.1 18

2.1 – Unconditional Jumps (JMP)

An unconditional jump, as the name implies, allows the transfer of execution from one part of your program
to another without any conditions.

All jump instructions work by altering the value of the IP register.

Below is a sample that shows the operation of the Jmp mnemonic. This modifies the previous sample to skip
the greetings message.

#===

File: Sample3.s

Assemble: gcc -c Sample3.s

Link: ld Sample3.o –o Sample3

Run: ./Sample3

#===

.global _start

This is the section where the assembler assumes your code is located

.text

_start:

#write (1, promptMsg, msgLen)

 mov $1, %rax

 mov $1, %rdi

 mov $promptMsg, %rsi

 mov $promptMsgLen, %rdx

 syscall

 #read (0, inputBuffer, bufLen)

 mov $0, %rax

 mov $0, %rdi

 lea (inputBuffer), %rsi

 mov $bufLen, %rdx

 syscall

 #Add an “!” and CR to buffer

 lea (inputBuffer), %rsi

dec %rax

 movb $33, (%rax, %rsi, 1)

 inc %rax

 movb $CR, (%rax, %rsi, 1)

 inc %rax

 movb $LF, (%rax, %rsi, 1)

 inc %rax

 mov %rax, (nameLen)

 #Unconditional jump

jmp SkipGreetings

 #write (1, Greetings, GreetingLen)

 mov $1, %rax

 mov $1, %rdi

 mov $Greetings, %rsi

 mov $GreetingLen, %rdx

 syscall

SkipGreetings:

 #write (1, inputBuffer, nameLen)

 mov $1, %rax

 mov $1, %rdi

 mov $inputBuffer, %rsi

 mov nameLen, %rdx

 syscall

Version 1.1 19

 #exit(0)

 mov $60, %rax

 xor %rdi, %rdi

 syscall

#===

.data

 CR = 13

 LF = 10

 bufLen = 100

 promptMsg: .ascii "Enter your name: "

 promptMsgLen = .-promptMsg

 CR_LF_1: .byte CR, LF

 Greetings: .ascii "Hello"

 GreetingLen = .-CR_LF_1

#===

This is the section where the assembler expects uninitialized data

.bss

 .lcomm inputBuffer, bufLen

 .lcomm nameLen, 4

Version 1.1 20

2.2 – Compare instruction (CMP)

Recall the flags register…

Symbol Bit Name Set if

CF 0 Carry Operation generated a carry or borrow

PF 2 Parity Last byte has an even number of 1’s, else 0

AF 4 Adjust Carry or borrow out of the four least significant bits (BCD support)

ZF 6 Zero Result was 0

SF 7 Sign Most significant bit of results is 1

IF 9 Interrupt Interrupt Enable

DF 10 Direction Direction string instructions operate (increment or decrement)

OF 11 Overflow Overflow on signed operation

The compare instruction is essentially a subtract instruction that does not alter the value of the operands but
impacts the value of the flags registers just like a subtract instruction would. We study the compare
instruction because its impact on the flags register is exploited by many Jump instructions.

You can type the following instructions into one of your earlier samples and trace each instruction and see
how it impacts the flags register.

 mov $9, %rax

 mov $8, %rbx

 mov $9, %rcx

 cmp %rax, %rbx

 cmp %rbx, %rax

 cmp %rax, %rcx

The following debugger output shows that the three “mov” instructions did not impact the flags register.

The “cmp %rax, %rbx” involves (%rbx - %rax or “8 – 9”). In signed arithmetic, this leads to “-1”. So we
expect the “CF”, “AF” and “SF” flags to be set…

Version 1.1 21

The “cmp %rbx, %rax” involves (%rax - %rbx or “9 - 8”). In both signed and unsigned arithmetic, this leads to
a +1. So we expect the previously set flags to be cleared...

The “cmp %rax, %rcx” involves “9 – 9”. This will yield “0” and hence the “ZF” and the “PF” flag is set...

Version 1.1 22

2.3 – Zero or Equality Jumps (JZ, JE, JNZ, JNE)

.The Jump Zero (“JZ”) and the Jump Equal (“JE”) instructions do the exact same thing – they both check if
the ZERO flag is set and if it is, they jump to the tag provided in the operand.

Similarly the Jump Not Zero (“JNZ”) and the Jump Not Equal (“JNE”), jump to the tag provided in the
operand if the ZERO flag is not set.

The sample below demonstrates the use of these instructions. Note that I have used the “JE” and “JNE”
instructions. You can replace these with “JZ” and “JNZ” respectively, without altering the behavior.

Instead of moving “8” to the rax register, change the code to move “9” into the ax register and confirm that
the jump to “JUMP_ZERO” tag gets executed.

Note that the Jump instructions do not change the value of the flags register and so we can have multiple
conditional jumps subsequent to the compare instruction.

#===

File: Sample4.s

Assemble: gcc -c Sample4.s

Link: ld Sample4.o -o Sample4

Run: ./Sample4

#===

.global _start

.text

_start:

 mov $8, %rax

 mov $9, %rbx

 cmp %rax, %rbx

 je JUMP_ZERO

 jne JUMP_NOT_ZERO

JUMP_ZERO:

 mov $1, %rax

 mov $1, %rdi

 mov $zeroMsg, %rsi

 mov $zeroMsgLen, %rdx

 syscall

 jmp EXIT

JUMP_NOT_ZERO:

 mov $1, %rax

 mov $1, %rdi

 mov $nonZeroMsg, %rsi

 mov $nonZeroMsgLen, %rdx

 syscall

EXIT:

 #exit(0)

 mov $60, %rax

 xor %rdi, %rdi

 syscall

#===

.data

 CR = 13

 LF = 10

Version 1.1 23

 zeroMsg: .ascii "Zero Message"

 CR_LF_1: .byte CR, LF

 zeroMsgLen = .-zeroMsg

 nonZeroMsg: .ascii "Non Zero Message"

 CR_LF_2: .byte CR, LF

 nonZeroMsgLen = .-nonZeroMsg

#===

Version 1.1 24

2.4 – Unsigned Jumps (JA, JAE, JB, JBE)

The Unsigned jumps use the ZERO and CARRY flags.

Jump if Above (“JA”) instruction jumps to the tag provided in the operand if both the ZERO flag and the
CARRY flag are not set. If the ZERO flag is set, we know the numbers used in the last compare were equal.
If the CARRY flag was set we know the last compare involved subtracting a larger number from a smaller
number. If neither of these flags were set, the last compare involved subtracting a smaller number from a
larger number. In this case the “JA” instruction will jump to the tag provided in the operand.

Similarly Jump if Above or Equal (“JAE”) causes a jump if either the Zero flag is set or if CARRY flag is not
set.

Jump if Below (“JB”) instruction jumps to the tag provided in the operand if the ZERO flag is not set but the
CARRY flag is set.

Jump if Below or Equal (“JBE”) causes a jump if either the Zero flag is set or if the CARRY flag is set.

Another way to look at these instructions is to consider a compare between unsigned numbers. If the first
number is equal to the second number, the ZERO flag is set. So both the “JAE” and “JBE” will cause a jump
in this case.

If the first number is greater than the second number, both the ZERO flag and the CARRY flag are not set.
In this case both the “JA” and “JAE” instructions will cause a jump.

If the first number is less than the second number, the ZERO flag is not set, but the CARRY flag is set. In
this case both the “JB” and “JBE” will cause a jump.

Hence these jump instructions are designed to compare unsigned numbers.

In the sample below change the values in the ax and bx register before the compare instruction and try and
explain why it is not possible to jump to the “JUMP_BELOW_EQUAL” tag irrespective of the values used in
ax and bx.

#===

File: Sample5.s

Assemble: gcc -c Sample5.s

Link: ld Sample5.o -o Sample5

Run: ./Sample5

#===

.global _start

.text

_start:

 mov $8, %rax

 mov $9, %rbx

 cmp %rax, %rbx

 ja JUMP_ABOVE

 jae JUMP_ABOVE_EQUAL

 jb JUMP_BELOW

 jbe JUMP_BELOW_EQUAL

JUMP_ABOVE:

 mov $1, %rax

 mov $1, %rdi

 mov $jumpAboveMsg, %rsi

 mov $JA_MsgLen, %rdx

Version 1.1 25

 syscall

 jmp EXIT

JUMP_ABOVE_EQUAL:

 mov $1, %rax

 mov $1, %rdi

 mov $jumpAboveEqual,%rsi

 mov $JAE_MsgLen, %rdx

 syscall

 jmp EXIT

JUMP_BELOW:

 mov $1, %rax

 mov $1, %rdi

 mov $jumpBelowMsg, %rsi

 mov $JB_MsgLen, %rdx

 syscall

 jmp EXIT

JUMP_BELOW_EQUAL:

 mov $1, %rax

 mov $1, %rdi

 mov $jumpBelowEMsg, %rsi

 mov $JBE_MsgLen, %rdx

 syscall

EXIT:

 #exit(0)

 mov $60, %rax

 xor %rdi, %rdi

 syscall

#===

.data

 CR = 13

 LF = 10

 jumpAboveMsg: .ascii "Jump Above"

 .byte CR, LF

 JA_MsgLen = .-jumpAboveMsg

 jumpAboveEqual:.ascii "Jump Above or Equal"

 .byte CR, LF

 JAE_MsgLen = .-jumpAboveEqual

 jumpBelowMsg: .ascii "Jump Below"

 .byte CR, LF

 JB_MsgLen = .-jumpBelowMsg

 jumpBelowEMsg: .ascii "Jump Below or Equal"

 .byte CR, LF

 JBE_MsgLen = .-jumpBelowEMsg

#===

Version 1.1 26

2.5 – Signed Jumps (JG, JGE, JL, JLE)

The Signed jumps use the SIGN, ZERO and OVERFLOW flags.

Jump if Greater (“JG”), Jump if Greater or Equal (“JGE”), Jump if Less (“JL”) and Jump if Less or Equal
(“JLE”) are very similar to the “JA”, “JAE”, “JB”, “JBE” instructions respectively. However these apply to
signed numbers.

The sample below shows the use of signed jumps.

#===

File: Sample6.s

Assemble: gcc -c Sample6.s

Link: ld Sample6.o -o Sample6

Run: ./Sample6

#===

.global _start

.text

_start:

 mov $-4, %rax

 mov $-8, %rbx

 cmp %rax, %rbx #%rbx - %rax

 jg JUMP_GREATER

 jge JUMP_GREATER_EQUAL

 jl JUMP_LESS

 jle JUMP_LESS_EQUAL

JUMP_GREATER:

 mov $1, %rax

 mov $1, %rdi

 mov $jumpGreaterMsg,%rsi

 mov $JG_MsgLen, %rdx

 syscall

 jmp EXIT

JUMP_GREATER_EQUAL:

 mov $1, %rax

 mov $1, %rdi

 mov $jumpGreaterEq, %rsi

 mov $JGE_MsgLen, %rdx

 syscall

 jmp EXIT

JUMP_LESS:

 mov $1, %rax

 mov $1, %rdi

 mov $jumpLessMsg, %rsi

 mov $JL_MsgLen, %rdx

 syscall

 jmp EXIT

JUMP_LESS_EQUAL:

 mov $1, %rax

 mov $1, %rdi

 mov $jumpLessEMsg, %rsi

 mov $JLE_MsgLen, %rdx

 syscall

EXIT:

 #exit(0)

 mov $60, %rax

 xor %rdi, %rdi

Version 1.1 27

 syscall

#===

.data

 CR = 13

 LF = 10

 jumpGreaterMsg: .ascii "Jump Greater"

 .byte CR, LF

 JG_MsgLen = .-jumpGreaterMsg

 jumpGreaterEq: .ascii "Jump Greater Equal"

 .byte CR, LF

 JGE_MsgLen = .-jumpGreaterEq

 jumpLessMsg: .ascii "Jump Less"

 .byte CR, LF

 JL_MsgLen = .-jumpLessMsg

 jumpLessEMsg: .ascii "Jump Less Equal"

 .byte CR, LF

 JLE_MsgLen = .-jumpLessEMsg

#===

Version 1.1 28

2.6 – Other Jumps (JC, JNC, JO, JNO, JS, JNS, JCXZ)

In addition to the Unconditional, Zero, Unsigned and Signed jumps, there are three other jumps that target
specific flags.

Jump if Carry (“JC”) executes a jump if the CARRY flag is set. Similarly Jump if No Carry (“JNC”) jumps if
the CARRY flag is not set.

Jump if Overflow (“JO”) executes a jump if the Overflow flag is set. Similarly Jump if No Overflow (“JNO”)
jumps if the Overflow flag is not set.

Jump if Sign (“JS”) executes a jump if the Sign flag is set. Similarly Jump if No Sign (“JNS”) jumps if the Sign
flag is not set.

Yet another jump instruction that can be very useful in implementing a loop with a specific number of
iterations is the Jump if RCX Zero (“JRCXZ”) instruction.

Below is a sample showing how the “JRCXZ” instruction can be used to implement a loop. Note that I have
used three new instructions in this sample – “PUSH”, “POP” and “DEC”.

The “PUSH” and “POP” instructions are mechanisms to save data on the stack. In the sample below, the

value of the “RCX” register could potentially be overwritten. Hence I saved its value on the stack with the
“PUSH” instruction and later restored it with the “POP” instruction.

The “PUSH” instruction effectively translates to the following sub instructions;

sub $8, %rsp
mov <quad data to be saved>, (%rsp)

First we decrement the stack pointer (note the stack grows to lower addresses), then we save the data in the
new location of the stack pointer. We will talk more about the indirect addressing mode (the parenthesis
around %rsp) later on.

The “POP” instruction is the inverse of the “PUSH”. The following sub instructions effectively sum up the
“POP instruction.

 mov (%rsp), <quad data to be retrieved>
 add %rsp, $8

The decrement (“DEC”) instruction simply subtracts 1 from the operand. Similarly the increment (“INC”)

instruction adds 1 to the operand.

#===

File: Sample7.s

Assemble: gcc -c Sample7.s

Link: ld Sample7.o -o Sample7

Run: ./Sample7

#===

.global _start

.text

_start:

 mov $10, %rcx

START_LOOP:

 jrcxz EXIT

 push %rcx

 mov $1, %rax

Version 1.1 29

 mov $1, %rdi

 mov $loopMsg, %rsi

 mov $loopeMsgLen, %rdx

 syscall

 pop %rcx

 dec %rcx

 jmp START_LOOP

EXIT:

 #exit(0)

 mov $60, %rax

 xor %rdi, %rdi

 syscall

#===

.data

 CR = 13

 LF = 10

 loopMsg: .ascii "Looping..."

 .byte CR, LF

 loopeMsgLen = .-loopMsg

#===

Version 1.1 30

3.0 – Loop Instructions

In the previous two sections we learnt two constructs in writing code - sequential processing and the ability
to jump to addresses that are not necessarily in sequence. In this section we introduce a third construct in
programming called looping.

Loop instructions allow the user to repeatedly execute a set of instructions until one or more conditions are
met. In some respects a loop instruction is a special case of a Jump instruction, but the construct is powerful
enough to warrant a dedicated section. Besides, most processors including the x86 processor, have
specialized instructions for looping.

Version 1.1 31

3.1 – Basic Loop (LOOP)

Our knowledge of the Jump if Not Zero (“JNZ”) and jump if Zero (“JZ”) instructions will allow us to implement
a very basic loop.

The sample below is a slight modification of the sample in the previous section. There are two loops in this
sample.

In the first loop I have replaced the “JCXZ” instruction with a JNZ. I am exploiting the fact that the “DEC”
instruction sets the ZERO flag.

The second loop introduces the “LOOP” instruction. The “LOOP” instruction decrements the CX register by

one and loops to the operand label if the CX register is not zero. Note that it does not alter the flags register.

#===

File: Sample8.s

Assemble: gcc -c Sample8.s

Link: ld Sample8.o -o Sample8

Run: ./Sample8

#===

.global _start

.text

_start:

 mov $10, %rcx

START_LOOP1:

 #This loop uses a "dec" and "jnz"

 push %rcx

 mov $1, %rax

 mov $1, %rdi

 mov $loop1Msg, %rsi

 mov $loop1MsgLen, %rdx

 syscall

 pop %rcx

 dec %rcx

 jnz START_LOOP1

 #We have come out of the first loop

 #Reinitialize %rcx

 mov $10, %rcx

START_LOOP2:

 #This loop replaces the "dec" and "jnz" with a "loop"

 push %rcx

 mov $1, %rax

 mov $1, %rdi

 mov $loop2Msg, %rsi

 mov $loop2MsgLen, %rdx

 syscall

 pop %rcx

 loop START_LOOP2

Version 1.1 32

EXIT:

 #exit(0)

 mov $60, %rax

 xor %rdi, %rdi

 syscall

#===

.data

 CR = 13

 LF = 10

 loop1Msg: .ascii "Loop 1..."

 .byte CR, LF

 loop1MsgLen = .-loop1Msg

 loop2Msg: .ascii "Loop 2..."

 .byte CR, LF

 loop2MsgLen = .-loop2Msg

#===

Version 1.1 33

3.2 – Other Loops (LoopE,LoopZ,LoopNE,LoopNZ)

The Loop if Zero (“LOOPZ”) or Loop if Equal (“LOOPE”) instructions are similar to the “LOOP” instruction

with one additional condition – they only loop if the ZERO flag is set.

The Loop if Not Zero (“LOOPNZ”) or Loop if Not Equal (“LOOPNE”) instructions are also similar to the
“LOOP” instruction with the additional condition that they only loop if the ZERO flag is not set.

These instructions are handy in cases where the number of loops is not always a constant but rather based
on a condition.

Version 1.1 34

4.0 – Calling Procedures

In the previous sections we discussed Sequential, Jump and Loop instructions. The main benefits of the
latter two programming constructs are that it allows a coder to reuse code that is written for generic
purposes (eg. reading user input).

While a Jump instruction allows a coder to jump to any location within the code, it does not provide a
mechanism to return to the location from which the Jump occurred once the generic code is executed. This
brings us to the fourth programming construct – Procedures.

Procedure calling is designed specifically to remedy the problem of knowing where and in what state to
return to, once the generic code is executed.

Version 1.1 35

4.1 – Calling a Procedure and Returning

A Procedure is essentially a set of instructions to do a specific task. For example in most of the samples
thus far we had a need to display an output. We would have been more effective to isolate that code to a
procedure and call the procedure each time we needed to display an output, rather than duplicate the code
each time.

In the sample below, I have written a procedure called “StrOut” to display a string. The caller is expected to
pass in the offset to the string to be displayed in the “rax” register and the count of the number of characters
in the string in the “rbx” register. These are referred to as the “input” parameters to the procedure. If the
procedure was expected to return a value back to the caller, that would be referred to as an “output”
parameter. By convention, output parameters are passed in the “rax” register.

The “CALL” instruction does 2 things – it saves the RIP register on the stack and jumps to the procedure.

The “RET” instruction pops the previously saved IP register.

If the procedure is going to save anything on the stack (and it almost always will), it is very
important that it pops everything back before calling the “RET” instruction, else an invalid value will
be popped into the IP register.

#===

File: Sample9.s

Assemble: gcc –g -c Sample9.s

Link: ld Sample9.o -o Sample9

Run: gdb ./Sample9 (use the ‘s’ step command to

walk every line of code and inspect registers)

#===

.global _start

.global _start

.text

_start:

 mov $msgString1, %rdi

 mov $msgStringLen1, %rsi

 call StrOut

 mov $msgString2, %rsi

 mov $msgStringLen2, %rdx

 mov $1, %rax

 mov $1, %rdi

 syscall

EXIT:

 #exit(0)

 mov $60, %rax

 xor %rdi, %rdi

 syscall

 StrOut:

 #Prologue

 push %rbp #save rbp

 mov %rsp, %rbp #save rsp in rbp

 sub $4, %rsp #save area in stack for locals

 push %rsi #save registers we place to use

 push %rdx

 push %rax

Version 1.1 36

 push %rdi

 pushf #push flags register

 #Function code

 mov %rsi, %rdx

 mov %rdi, %rsi

 mov $1, %rax

 mov $1, %rdi

 syscall

 #Epilogue

 popf #pop flags register

 pop %rdi #restore the previously stored registers

 pop %rax

 pop %rdx

 pop %rsi

 mov %rbp, %rsp #remove area for locals

 pop %rbp #restore rbp

 ret

#===

.data

 CR = 13

 LF = 10

 msgString1: .ascii "In a function call!"

 .byte CR, LF

 msgStringLen1 = .-msgString1

 msgString2: .ascii "Out of function call!"

 .byte CR, LF

 msgStringLen2 = .-msgString2

#===

Version 1.1 37

5.0 – Addressing Modes
Accessing data in registers and in memory is an essential part of assembler programming. Every processor
allows for different methods to specify source and destination addresses for various instructions.

In this section we will cover the most common addressing modes used by the x64 processor.

Version 1.1 38

5.1 – Register Addressing Mode

This involves accessing data in registers. It is a very common and straight forward technique and we have
used it in almost all the samples thus far. The following is an example of Register Addressing mode.

mov %rax, %rbx

Here we are moving the contents of the “RAX” register into the “RBX” register.

5.2 – Immediate Addressing Mode

When a data value is a constant, it can be made available as an operand. The following is an example of an
Immediate Addressing Mode.

 mov $9, %rcx

This instruction moves “9” to the “RCX” register.

5.3 – Direct Addressing Mode

If we wanted to access memory at a known address, we could enclose the known address in parenthesis
and offer that as our operand. The following is an example of direct addressing.

 mov (0x4000b0), %rax

Here we move the contents at memory address 0x4000b0 into the RAX register.

5.4 – Register Indirect Addressing Mode

Sometimes a register contains an address of a memory location. In these cases we can access the value at
that address by enclosing the register in parenthesis and use that as our operand.

 mov $0x4000b0, %rax
 mov (%rax), %rbx

Here we move the contents of memory whose address is in the “RAX” register to the “RBX” register.

5.5 – Register Indirect Indexed Addressing Mode

The register indirect addressing mode can be extended to access elements of an array for example, by
using the following syntax;

 mov $0x4000b0, %rax
 mov 0x10(%rax), %rbx

This will fetch the contents of memory at the address defined by the “RAX” register plus 0x10 and move it to
RBX.

Other variations include the following:

 mov (%rax,%rbx), %rcx  Mem[%rax+%rbx] -> %rcx
 mov (%rax, %rbx, 5), %rcx  Mem[%rax + 5*%rbx] -> %rcx

Version 1.1 39

 mov 0x10(%rax, %rbx, 5), %rcx  Mem[%rax + 5*%rbx + 40] -> %rcx

The most general form is as follows:

Displacement(baseRegister, indexRegister, scale)



Mem [baseRegister + (Scale * indexRegister) + Displacement]

Version 1.1 40

6.0 – More complex Instructions

In this last section on assembler programming, we will study a few more complex instructions available to us
in the x64 processor.

Version 1.1 41

6.1 – Bit Operations

OR

The “OR” instruction is used to turn on individual bits in the destination operand based on a mask that is
provided as the source operand.

or $0x0f, %rax

In the example above, we ensure that the lowest 4 bits in the RAX register are set.

AND

The “AND” instruction is used to turn off individual bits in the destination operand based on a mask that is
provided as the source operand.

and $0x0f, %rax

In the example above, only the lowest 4 bits of the RAX register are preserved. All other bits are set to zero.

XOR

The Exclusive OR operation inverts all the bits in the destination operand, for which the corresponding mask
bits are set.

xor $0x0f, %rax

TEST

The “TEST” instruction is very similar to the “AND” operation with the exception that it does not alter the
destination operand. Instead it only sets the flags register to indicate if the operation resulted in a zero or
non-zero result. This can then be used by the JUMP instructions. The “TEST” is the BOOLEAN equivalent of
a “CMP” instruction.

SHL

The Shift Left (“SHL”) instruction shifts the bits in the destination operand to the left. The number of bits to
be shifted is provided as the source operand. During each 1 bit left shift, the bit shifted out of the most
significant bit is placed in the Carry bit of the flags register and a bit ‘0” is shifted into the least significant bit.

Note that shifting left by 1 bit is the equivalent of multiplying by 0x02.

SHR

The Shift Right (“SHR”) instruction shifts the bits in the destination operand to the right. The number of bits
to be shifted is provided as the source operand. During each 1 bit right shift, the bit shifted out of the least
significant bit is placed in the Carry bit of the flags register and a bit “0” is shifted into the most significant bit.

Note that shifting right by 1 bit is the equivalent of unsigned division by 0x02.

SAR

The Shift Arithmetic Right (“SAR”) is similar to the “SHR” instruction with the exception that that the most
significant bit will always remain unchanged. Since the most significant bit is the sign bit, this instruction can
be useful for signed division.

ROL

Version 1.1 42

The Rotate Left (“ROL”) instruction rotates the bits in the destination operand in the counter clockwise
direction. The number of bit shifts is defined by the source operand. During each shift to the left, the most
significant bit defines the value of the Carry flag.

ROR

The Rotate Right (“ROR”) instruction rotates the bits in the destination operand in the clockwise direction.
The number of bit shifts is defined by the source operand. During each shift to the right, the least significant
bit defines the value of the Carry flag.

RCL

The Rotate Left Through Carry (“RCR”) is similar to the ROL instruction with the exception that the bits are
rotated counter clockwise through the Carry Flag.

RCR

The Rotate Right Through Carry (“RCR”) is similar to the ROR instruction with the exception that the bits are
rotated clockwise through the Carry Flag.

Version 1.1 43

6.2 – Arithmetic Operations

ADD

The Add instruction adds the source and destination operands and places the result in the destination
operand.

ADC

The Add with Carry (“ADC”) instruction adds the source, destination and the “Carry Flag” bit and places the
result in the destination operand.

SUB

The Subtract (“SUB”) instruction subtracts the source from the destination and places the result in the
destination operand.

SBB

The Subtract with Borrow (“SBB”) subtracts the sum of the source and the “Carry flag” from the destination
and places the result in the destination operand.

CBW

The Convert Byte to Word (“CBW”) instruction uses the input BYTE in the AL register and converts it to a
WORD in the AX register.

This is a useful instruction for converting both signed and unsigned BYTEs to WORDs. It effectively
performs a sign extension by ensuring that the most significant bit in the BYTE is replicated in all the extra
bits provided by the WORD.

CWD

The Convert Word to Double (“CWD”) instruction is very similar to the “CBW” instruction. It takes the AX
register as the input WORD and converts it to a DWORD in DX and AX registers where DX has the high
WORD and AX has the lower WORD.

STC, CLC and CMC

Sometimes you may want to directly control the value of the Carry flag when performing arithmetic
operations.

The Set Carry (“STC”) allows you set the Carry flag.

The Clear Carry (“CLC”) allows you to clear the Carry flag.
The Complement Carry (“CMC”) allows you to inverts the current value of the Carry flag.

LEA

The Load Effective Address (“LEA”) instruction allows you to find the address offset of a memory variable.
We used this in a number of our previous samples to find the address of our input buffer.

To use the “OFFSET” directive however, the address should be available at assembly time. If the address is
only available at runtime, the “LEA” instruction must be used. In the example below, the contents of BX is
added to the contents of SI and that result is added to 7 to give the offset that is placed in the AX register.
Since the contents of BX and SI are only available at runtime, the “LEA” instruction must be used.

While the “LEA” instruction is generally used for address calculation, there is no reason why it can’t be used
for arithmetic operations.

Version 1.1 44

6.3 – Interrupt Operations

STI

The Set Interrupt (“STI”) instruction enables interrupts by setting the Interrupt Flag (IF) bit in the flags
register.

CLI

The Clear Interrupt (“CLI”) instruction disables interrupts by clearing the Interrupt Flag (IF) bit in the flags
register.

Version 1.1 45

6.4 – String Operations

MOVSB

The Move Single Byte (“MOVSB”) instruction is a complex instruction that allows you to move a byte from a
source address to a destination address. Effectively it does the following:

mov (%si), %al ; copySI to al
mov %al, (%di) ; move al to DI
inc/dec %rsi ; increment or decrement SI based on Direction flag
inc/dec %rdi ; increment or decrement DI based on Direction flag

As you might guess, before using the “MOVSB” instruction, you need to ensure that ES, SI, DI and the
Direction flag is set up correctly.

Note: If the Direction Flag is zero, RDI and RSI are incremented, else they are decremented.

STD and CLD

As noted in the “MOVSB” instruction, the value of the direction flag dictates if SI and DI are incremented or
decremented by the “MOVSB” instruction.

The Set Direction (“STD”) instruction sets the Direction flag.

The Clear Direction (“CLD”) clears the Direction flag.

MOVSW

The “MOVSW” instruction is very similar to the “MOVESB” instruction but works on a WORD instead of a
BYTE.

REP MOVSB

The Repeat MOVSB (“REP MOVSB”) instruction allows you to repeat the move instruction for a number of
iterations defined by the CX register. Think of it as a loop instruction that decrements the CX register in each
iteration and jumps out of the loop when CX hits zero.

REP MOVSW

Similar to “REP MOVSB”, but works on WORDs instead of BYTEs.

STOSB and STOSW

The Store String by Byte (“STOSB”) and Store String by Word (“STOSW”) allow you to store the value in a
register into a memory address. Effectively, these instructions do half the work done by the
MOVSB/MOVSW instructions – they move data from register to memory instead of memory to memory.

The STOSB instruction saves the byte in the AL register to the memory address defined by ES:[DI] and then
increments or decrements the DI register by one, based on the Direction Flag.

The STOSW instruction saves the word in the AX register to the memory address defined by ES:[DI] and
then increments or decrements the DI register by two, based on the Direction Flag.

REP STOSB and REP STOSW

The Repeat (“REP”) qualifier can also be used with the STOSB and STOSW instructions to repeat the
instructions by a count defined by the RCX register.

LODSB and LODSW

Version 1.1 46

The Load String Byte (“LODSB”) and Load String Word (“LODSW”) allow you to load the value in a memory
location into a register. These instructions do the other half of the work done by the MOVSB/MOVSW
instructions.

The LODSB instruction loads a byte from DS:[SI] to the AL register and then increments or decrements the
DI register by one, based on the Direction Flag.

The LODSW instruction loads a word from the DS:[SI] to the AX register and then increments or decrements
the DI register by two, based on the Direction Flag.

CMPSB

The Compare String Byte (“CMPSB”) instruction compares two memory byte locations defined by DS:[SI]
and ES:[DI]. It then sets the flags to indicate the result of the comparison and then increments or
decrements the SI and DI registers, depending on the Direction Flag.

REPE and REPNE

The Repeat while Equal (“REPE”) and Repeat while Not Equal (“REPNE”) can be used in conjunction with
the “CMPSB” instruction to compare a number of bytes defined by the CX register.

SCASB

The Scan String for Byte (“SCASB”), compares the BYTE in the AL register with the BYTE in ES:[DI] and
sets the flags to reflect this comparison. It then increments or decrements the DI register, depending on the
Direction Flag.

The REPE and REPNE qualifiers can also be used with “SCASB”.

Version 1.1 47

7.0 – Conclusion

Every programming language has a set of constructs and a set of instructions. In the x64 assembler
programming language we studied the following five constructs:

 Sequential processing

 Jumps

 Loops

 Procedure calls

 Addressing Modes

Along the way, we also came across several x64 instructions that allow us to do bit manipulations, arithmetic
operations and string operations.

The constructs of a programming language are the equivalent of grammar, and instructions are the
equivalent of vocabulary, in a spoken language. As with spoken languages, fluency in constructs and
instructions come with continued use of the language. Hence it is recommended that the student practice
the concepts discussed in this set of notes by writing many more applications.

