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Prerequisites  

 Fundamentals in Digital Design (ALS notes in Hardware Engineering) 
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Preface  

In the notes on the “Fundamentals in Digital Design”, we discussed the scientific theories and techniques 
involved in the translation of logic equations into logic realizations using solid state digital gates. In this set of 
notes on the “Fundamentals in ASIC Design”, we will go a step further by investigating a “real world” 
problem and systematically walking through the various phases of an engineering project lifecycle. The 
problem we will address will involve the automation of a cashier stand in a grocery store. The solution for the 
problem will entail the design of an Application Specific Integrated Circuit (ASIC).  

 
We will begin with a business case that justifies the need for an automated cashier stand and then proceed 
to gather the end user requirements. Subsequently we will come up with a high level technical design. We 
will then leverage the high level design to estimate the cost and duration of the project. Based on these 
preliminary efforts, we will put forth a realistic and competitive bid for the project.  
 
Once our bid is successful, we will expand upon our high level technical design and start the unit design and 
implementation phase. This involves assigning engineers to the various modules identified by our high level 
design.  
 
Finally we will integrate the modules and manufacture the ASIC before testing for compliance against the 
end user requirements used in the bidding phase.  
 
At the conclusion of this module, the student will have a broad understanding of both the technical and non-
technical areas of product development, while utilizing and building upon the technical knowledge gained 
previously.  
 
Such an exercise, it is hoped, will allow the student to gain a finer appreciation for the skills that are required 
by the modern marketplace. 
 
At a personal level, I must note that I am not an advocate of automation for the sake of increased profits. To 
deny the momentum of the modern trend however, would not allow me to equip the next generation with the 
skills required to survive in the world that my generation has left for them. To condone it on the other hand, 
would be to reveal my ignorance of the unsustainable effects of automation on human society. There is a 
delicate balance that I tread here and I hope my students will be forever conscious of that fact. 
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1.0 – The Bidding Process 

Assume you know of a grocer who employs five cashiers to accept payments from his customers at any 
given time. You find that he has difficulty hiring good cashiers and it appears even more difficult to keep the 
good ones – they seem interested to move on before too long. Every full time cashier costs the grocer an 
average of $30,000 a year for a total of $150,000 a year. If he can eliminate this cost, he could potentially 
relay the savings to his customers by lowering the prices of the merchandise that he sells and hence win 
more customers from his competition.  

One way to eliminate the need for cashiers would be to automate the process using technology that will 
allow customers to pay for their purchases themselves.  Since the store owner is not in the technology 
business, you encourage him to invite technology vendors like yourself, to present products and estimates 
on how much it would cost him to install such a self-service cashier machine. Based on the presentation 
from the different technology vendors, he gets a chance to decide on the product that best meets his needs 
and budget.  

This process of getting input from multiple product vendors and then deciding on the product that best suits 
his requirements is referred to as the bidding process. It is often the starting point in the lifecycle of an 
engineering project.  In this section we will briefly cover the main aspects of the bidding process.  
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1.1 – Business Justification  
 

Although the grocer is fully aware of the difficulty he has in hiring and keeping his cashiers and the cost that 
they add to his business, he may not have thought through all the benefits of eliminating the cashier 
positions altogether. By quantifying the full scope of benefits, you help bring visibility to the advantages of 
your proposal and your product. It helps him justify buying your product for more reasons than he is already 
aware of. This form of advertising helps you win his business and hence it is a crucial component of your 
bid.  

Let us first identify the different ways that automation of cashier stalls can impact your friend’s grocery 
business. 

1) Eliminate five people from his payroll for a total savings of $150,000 per year. 
2) Eliminate the time and effort required to hire 1 new cashier every 3 months. 
3) Eliminate the time and effort required to train 1 new cashier every 3 months. 
4) Eliminate losses encountered due to human error during cash transactions. 
5) Reduce extended line-ups when a trainee cashier is on duty. 

 
Let us try and quantify these benefits into a dollar value in savings. 

1) The savings in payroll is already quantified as $150,000. 
2) Assuming on average your friend spends 8 hours advertising and conducting interviews to hire a 

cashier. Assume also that based on your friend’s income, he earns about $100/hr. So the 8 hours 
he spends hiring a cashier is probably costing him $800 every 3 months for a total of $3,200 a year. 

3) Training a new cashier takes 2 full days and 4 half days of your friend’s time for a total of 4 full 
days. Assuming a full day involves 8 hours and again assuming your friend is worth $100/hr, 
cashier training is costing your friend $3,200 every 3 months for a total of $12,800 a year. 

4) Assume on average each cashier losses $10 a day in human error. Assuming there are 5 cashiers 
working each day and that the grocery store is open for 260 days a year, this amounts to an annual 
loss of $13,000. 

5) Customer frustration dealing with a trainee cashier is hard to quantify, but the grocery owner 
acknowledges that he has seen his customers leave the store, never to return under those 
circumstances. Let us be conservative and say that he losses 1 customer every time there is a new 
cashier. This in turn translates to 4 customers a year. On average a customer is worth $5000 a 
year in profits. The loss of 4 customers will then translate to $20,000 a year. 

 
Let us now tabulate these figures to see the actual dollar benefit of automating the cashier stalls. 
 

Benefit type Savings 

Payroll saving $150,000 

Hiring cost savings $3,200 

Training cost savings $12,800 

Human error savings $13,000 

Customer frustration savings $20,000 

Total Savings $199,000 

 
 
Not accounting for the capital investment required to buy the automated cashier machines, what the above 
table indicates is that even if the grocer needs to employ a technology specialist to maintain his automated 
cashier machines for $99,000 a year, he still shows a profit of $100,000 a year, if he bought your 
technology. 
 
This business justification is a good starting point to get a feel for the feasibility of selling your product to a 
customer. If it takes less than five to ten years for the capital investment in a technology to pay for itself, in 
general, the business owner may be willing to make the investment. If it takes a lot longer, it will be harder to 
convince an entrepreneur of the merits of the investment, and you may be wise to save the cost of putting in 
a bid. 
 
Professions in Sales and Marketing specialize in business justification analysis of this sort. 
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1.2 – Requirements Analysis 

 
Once the preliminary business justification indicates that the prospect of using the technology is 
economically viable, the next step in the bidding process would involve getting a concrete understanding of 
the customer’s requirements. This phase is particularly important because these are the requirements 
against which your final product will be tested for acceptability. If both you and the customer agree on these 
set of requirements and later you are unable to deliver a product that matches every one of the 
requirements, then the customer is at liberty to discard the contractual agreement and you could potentially 
lose all the effort and money you put into building the product.  

In our example let us say that the following are the list of End-User requirements from the customer; 

1) The Cashier machine must be able to scan a bar code. 
2) The Cashier machine must be able to map a bar code to a price. 
3) The mapping table used by the cashier machine to map a bar code to a price must be 

programmable so that the grocery store owner can alter prices as and when needed. 
4) The mapping table shall not exceed 256 entries.  
5) The Cashier machine must provide a sub-total after each item is scanned. 
6) The Cashier machine will accept payments by credit cards only and will prompt the user to insert 

their credit card when they indicate that they have scanned all items. 
7) Once a credit card is inserted, the Cashier machine will charge the current sub-total to the credit 

card and provide the customer with a receipt of the transaction. 
8) The maximum price in any given session will not exceed $99.99. This limitation is added because 

the grocer is aware that he can save on the display unit costs by allowing this restriction. 
 

We will now translate the end-user requirements into a list of Technical Requirements that will distinguish 

between the things that you will implement and things that you intend to get off-the-shelf (meaning 
purchased from other vendors), since they are either generic items that are cheaper to buy than make, or 
you don’t have the expertise to make them.  

Since you are in the business of designing ASICs, as part of the technical requirements you will split the 
requirements that will be satisfied by the ASIC and those that will be provided by other vendors. 

Technology provided by 3rd party vendors. 

1) Bar code scanners that interface with EPROMs (Erasable Programmable Read Only Memory). 
2) EPROM programming interface. 
3) Credit card processing machines that can interface with an ASIC. 

 
Technology provided by your ASIC 
 

1) Ability to interface with EPROMS to read cost of an item. 
2) Ability to perform cumulative addition as each item is scanned. 
3) Ability to display cumulative sub-totals on a 7-Segment LCD (Liquid Crystal Display) unit with 4 

digits. 
4) Ability to interface with a Credit card machine to make charges. 

 
Professions in Program and Product Management specialize in this form of requirement gathering and 

analysis. 
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1.3 – High Level Design  

 
Once the requirements are finalized, it is time to get a better feel for the extent of the engineering effort 
involved in building the product. A high-level design attempts to do this by identifying the various modules 
that need to be implemented and/or integrated into the final product. Architects and other senior 
engineers work with Program Managers to help identify all the building blocks and how they piece 

together. This will allow program managers to come with reasonably accurate time and cost estimates for 
the project. 
 
Figure 1.3.1 shows a high-level block diagram for the Automated Cashier stand.  
 
 

 
 
While the top level design does not necessarily go into the details of how a particular module is going to be 
designed or implemented, it does define the expectations of inputs, outputs and interfaces. This level of 
detail is sometimes referred to as a “black box” definition.  
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Peripherals: 

 
We will start the analysis of this high level design by first studying the purpose of the peripherals (a part of 

the system that is external to the central core). Then we will study in the internal modules in the ASIC. 
 
The first peripheral is a bar code scanner that supplies a code (over multiple output lines also referred to as 
a bus – shown as thick lines in Figure 1.3.1) to an EPROM. Simultaneously, the bar code scanner provides 

a trigger line to the ASIC to indicate that a customer has scanned an item. For simplicity, in our contrived 
illustrative example we will limit the number of items in the store to four bits (or 256 items). 
 
The next peripheral is an EPROM that provides a programmable way for the grocer to map bar codes to 
prices. Think of the bar code as an address into a table in memory in the EPROM. Every time the address 
changes, the EPROM outputs the cost programmed into that row in memory. This output from the EPROM 
becomes input to the ASIC. Again for simplicity we will limit the cost of items to eight bits or 4 BCD (Binary 
Coded Decimal) values for a maximum price of 9999 cents per item. 
 
The third peripheral is a credit card processor. When the user indicates that they have finished scanning, by 
pressing the “Make Payment” button, the ASIC will present the dollar value to the credit card processor over 
16 lines (4 BCD values) for a maximum of $99.99. Once the transaction is completed by the credit card 
processor, it will indicate the status of completion as either a success or failure using a green light for 
success or a red light for failure. If the transaction is successful it will reset the ASIC, else a manual reset will 
be required, for which the store manager will be alerted.  
 
The fourth peripheral is a 7-segment Liquid Crystal Display (LCD). This will be used to display the new cost 
after each scan. 
 
As we have learnt previously, in any synchronous design, a system clock is required. We will use a 32MHz 
peripheral crystal oscillator (a device that provides a high frequency rectangular pulse) to get a clock input 

into the ASIC. We will then slow this clock for internal use, with the help of a frequency divider. 
 
ASIC: 

 
Now let us examine the modules that need to be implemented as part of the ASIC. 
 
We have already indicated that the 32Mhz crystal oscillator is too high a frequency for our needs inside the 
ASIC. Hence we will need to implement a Frequency Divider that will output a clock that can be used 

system wide. 
 
Next we need a way to delay the trigger coming from the scanner to allow time for the EPROM to process 
the input address change that occurred as part of the scan. If we read the output of the EPROM as soon as 
the bar code scanner indicates that an item has been scanned, there is a chance that we will catch the 
EPROM output in transition or in its previous state. This requires a Timer within the ASIC. 

 
Then we need an Adder to do the cumulative addition required after each scan. The Timer module will 

provide the trigger for the addition process. When the adder is triggered by the Timer, it will read the output 
of the EPROM and add that to its current output (sub-total). 
 
Finally we need four BCD to 7-Segment converters to take the output of the Adder and display it on the four 

LCD digits. 
 
Based on these modules discussed, we can determine the ASIC parameters that will help us decide on what 
kind of ASIC we need. Key parameters of interest are things like the number of Input and Output (I/O) pins 
required and the number of gates required.  
 
The number of I/O pins are easy to count. From fig 1.3.1, we need 18 input pins and 28 output pins for the 
LCD and 16 output pins for the credit card processor for a total of 44 output pins.  
 
The gate count is harder to compute at a high level. But from previous experience, we can make a guess at 
the number of gates that will be used by each of the modules and make guesstimates.  
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1.4 – Scheduling and Cost Estimation  
 
Project scheduling and cost estimation are perhaps the most critical components of the bidding process. 
Assuming all bids are on par in terms of functionality and design quality, the cost and the time to build the 
product is generally the key distinguishing factor in selecting the winning bid. On designs that you have 
previously implemented, it is often very easy to come up with accurate numbers for scheduling and cost. 
However, if this is the first time you are involved in a design of this nature, you will be wise to come up with 
your best guess and then pad it for unanticipated difficulties. The padding factor is something you choose 
based on previous experiences with guesstimates.  
 
The key aspects of scheduling and cost estimation involve the following; 
 

 Identify all the components that need to be built, bought, integrated and tested. We will leverage 
the effort we put into the high level design in the previous section for this purpose. 

 Estimate the number of hours required to complete each of the tasks identified.  

 Different tasks will require different skills and each skill type commands a certain hourly rate that is 
dictated by market forces. So we will make a note of the hourly rate for skill required for each task. 
In our example we will use 1 ASIC engineer at $70/hr, 7 purchasers  at $30/hr, 1 PCB layout 
engineer at $40/hr. Look at the table below to identify the tasks for each of these people – you can 
identify them based on their hourly rate. 

 We also need to identify any dependencies that a task may have on another task. This is essential 
because it signifies that the dependent task can only begin after its dependency is completed. 
Dependencies can be resource dependencies (same person has to work on both tasks) or task 
dependencies (one task requires another to be completed). 

 Based on the above, we can make notes on the start and completion dates for each task. 
 
The table below summarizes the above points for our automated cahier machine design. 
 
Task 

# 

Task Name Hours Hourly 

Rate 

Cost Depen

dency 

Start Date Completion 

Date 

1 Purchase a Crystal Oscillator to be 
used as the high frequency clock 

8 $30.00 $240.00 None 2nd Jan 2006 2nd Jan 2006 

2 Purchase a Bar code scanner 24 $30.00 $720.00 None 2nd Jan 2006 4th Jan 2006 

3 Purchase EPROM 24 $30.00 $720.00 None 2nd Jan 2006 4th Jan 2006 

4 Purchase Credit Card Processing unit 40 $30.00 $1200.00 None 2nd Jan 2006 6th Jan 2006 

5 Purchase Board to be used as the 
Printed Circuit Board (PCB) along with 
“Make Payment” switch and the “Red” 
and “Green” Light emitting Diodes 
(LEDs). 

8 $30.00 $240.00 None 2nd Jan 2006 2nd Jan 2006 

6 Purchase LCD 24 $30.00 $240.00 None 2nd Jan 2006 4th Jan 2006 

7 Place order for the most appropriate 
ASIC chip to be used based on gate 
count and I/O pin count. 

40 $30.00 $1200.00 None 2nd Jan 2006 6th Jan 2006 

8 Design, simulate and test Frequency 
Divider module. 

8 $70.00 $560.00 None 2nd Jan 2006 2nd Jan 2006 

9 Design, simulate and test Timer 
module. 

8 $70.00 $560.00 8 3rd Jan 2006 3rd Jan 2006 

10 Design simulate and test 
BCD_to_7_Segment module. 

8 $70.00 $560.00 9 4th Jan 2006 4th Jan 2006 

11 Design simulate and test ADDER 
module. 

40 $70.00 $2800.00 10 5th Jan 2006 12th Jan 2006 

12 Integrate ASIC module and test with 
simulator. 

16 $70.00 $1120.00 11 13th Jan 2006 16th Jan 2006 

13 Design and etch PCB with layout 
information 

16 $40.00 $640.00 None 2nd Jan 2006 3rd Jan 2006 

14 Send ASIC net list for manufacturing 
and receive ASIC. 

80 $100.00 $8000.00 12 17th Jan 2006 31st Jan 2006 

15 Integrate peripherals with ASIC and 
test. 

80 $70.00 $5600.00 14 1st Feb 2006 15thFeb 2006 
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Based on the table above, we know that as a rough estimate, the cost price for designing and implementing 
the automated cashier machine will cost us $24,400 and will require approximately 6 weeks to complete. To 
this cost we need to add our profit margins. Assuming a profit margin of 30%, the product will cost our client 
$31,720.  Depending on the bids from our competition, we can tweak the profit margins to the extent 
necessary. Notice how competition forces producers to keep costs under check. 
 
We may also want to allow for unanticipated delays in manufacturing of the ASIC or delays caused by 
malfunctioning ASICs that need to be resent to the manufacturing lab. If we add 2 weeks for such 
eventualities, we will be able to promise the product in 8 weeks to our client. 
 
Scheduling and cost estimation is usually conducted by product or program managers. There are many 

software tools to aid in building and visualizing the table we constructed above. These tools have now 
become common place in project management. While they aid the process of constructing and policing a 
schedule, the essence of the planning exercise we engaged in above, remains unchanged irrespective of 
the tools that are used. 
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2.0 – Design and Implementation 

In the previous section we looked at an end-user problem and broke it down into many separate tasks which 
when put together achieve the end-user goal. The techniques we employed in this breakdown were mostly a 
top-down approach. By that I mean that we almost always looked at things at a high level and then tried to 

see how we could break it down to a lower level. This way of viewing and analyzing issues is a trait that is 
common to managers. It lends itself well to delegation of responsibilities. 
 
Scientists usually look at issues from a bottom-up approach. They tend to study low level fundamentals like 

the structure of atoms and then based on their understanding at that layer they try to apply that knowledge 
to predict interactions at a higher layer such as semiconductor behavior under the effect of doping agents. 
 
Engineers often need to use both these techniques depending on the phase of the product cycle. In the 
bidding phase the top-down approach is very efficient. However in the design and implementation phase the 
bottom-up approach helps build early confidence.  
 
In this section we will use the bottom-up approach to design each of the modules identified by the high level 
design in the previous section.  
 
Note that I will not cover the design of the BCD_TO_7_Segment design, since it was already discussed in 
the prerequisite notes. 
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2.1 – ASIC Design Considerations  
 

Use only high level logic devices 
 
When we studied the design of logic gates using CMOS technologies in the course on Digital Design 
Fundamentals, we discussed NOT, NAND, NOR, Transmission Gates and D-Flip-Flops. However, in that 
section we did not discuss the delays (also known as gate latencies) involved in the outputs reflecting the 

changes to the inputs.  
 
Yet another issue that we omitted in that discussion was the threshold input voltages required for 
recognizing a change in input state. Most of our discussion assumed that when we change an input from a 
“1” to a “0” or vice-versa the voltage associated with these logic states would change instantly (or in zero 
time). In reality however a voltage transition is never a “step” function but rather a “curve”. At some point 
during this curve the transistor registers the change in state. This point is referred to as the threshold 
voltage. 

 
When using gates in an ASIC design, parameters such as gate latencies and threshold voltages have to be 
well defined with only the most minimal variation allowances. If this were not the case, it would be 
impossible to predict the delays in rippling change through different parts of an ASIC design.  
 
Most high level gates like NOT, NAND, NOR and D-Flip-Flops can be accurately parameterized using the 
worst case performance characteristics of the underlying transistors. However low level devices, such as 
Transmission Gates are harder to parameterize, since their performance characteristics are often dependent 
on the context in which they are used. In other words, it may be easy to parameterize a D-Flip-Flop that 
uses a Transmission Gate but not easy to parameterize a Transmission Gate on its own. 
 
For reasons such as these, the use of low level logic gates are either forbidden or at least avoided in ASIC 
designs. 
 

 

Avoid autonomously timed outputs driving asynchronous lines 
 
Asynchronous lines refer to inputs that will cause a change in the output as quickly as the logic gates will 
allow. In other words, there is no dependency on any trigger (often a periodic clock) for the output to reflect 
the changes in the input values.  
 
An Autonomously timed output generally refers to output lines that are not necessarily synchronized or free 
from glitches.  
 
When an Autonomously timed output drives an Asynchronous input, there is a high likelihood of glitches on 
the output line being registered as a valid change in input state causing instability and unanticipated 
behaviors.   
 
As an example let us study the circuit in Fig 2.2.1. Depending on the design of the counter, the transition 
from state “3” (011b) to state “4” (100b) may involve a glitch where momentarily the state of the output pins 
represent state “7” (111b). If this transition time exceeds the delay through the AND gate, the design that 
was intended to be a 7-state machine (states “0” to “6”) would in fact end up being a 4-state machine (states 
“0” to “3”) because the RESET line will force to output to “0” (000b) every time we go from state “3” to “4”. 
 
 

 

3-bit 

up-counter 

 

RESET 

Fig 2.2.1: Autonomously Timed Outputs 
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Do not degrade clock edges 
 
One of the advantages of the CMOS technology is the decoupling of the input and output wave forms. In 
other words, irrespective of the rise or fall times (time taken to reach the threshold voltage during state 
change) at the input of a CMOS transistor the output will have a constant rise or fall time. Thus a signal may 
pass through several gates without being degraded in CMOS. The reason for this should be clear once we 
understand that the output signal in CMOS is shielded from the input by the oxide layer. Note however, that 
as a signal passes through several gates, it will accumulate the gate latencies of each gate.  
 
A node with a large fan-out (number of taps on a line) is however susceptible to degradation of the edges 

due to the variation of resistances on the different lines. A clock line is a good example of one with a large 
fanout. In synchronous designs, this line traces to almost all corners of the die leading to substantial 
degradation of edges (consequently poor rise and fall times). A poor clock edge can contribute to the 
malfunctioning of many synchronous devices.  
 
As an example let as look at the impact of a poor clock edge on the functioning of a D-Flip-Flop. Fig 2.3.1 
shows a comparison between a perfect clock edge and a severely degraded one. For a transistor to 
recognize a change in input state, it requires that pre-threshold voltage and post-threshold voltages be 
maintained for a period known as the “setup” and “hold” times respectively. If the time between the 

threshold for the rising edge and the threshold for the falling edge is less than or equal to the hold time for 
the D-Flip-Flop, it will behave as a transparent latch, where the input value is reflected at the output as soon 
as the rising clock edge is received. 
 
 

 
 
One way to remedy this situation is to exploit the CMOS decoupling effect by passing each fan-out of the 
clock through two CMOS NOT gates in series. This technique is referred to as “clock buffering”. However 
when doing this you introduce a delay in the clock. This can lead to a “clock skew” where the time when the 

clock’s rising edge arrives, varies in different parts of the die. Fortunately the software performing the layout 
of a design on a die, attempts to place all fan-outs at equidistance so that the delays on each fan-out is 
about the same. 
 

Hold Setup 

D-Flip-Flop operating with an ideal clock 

Hold Setup 

Threshold 
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Threshold 
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The effect of a degraded clock edge. 

 

Makes a D-Flip-Flop transparent 

Master Slave 

Fig 2.3.1: Degraded clock edges 
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Avoid race conditions 
 
If combinational blocks link sequential blocks (refer to notes on Fundamentals of Digital Design for 
definitions), it is essential to ensure that the delays through the combinational blocks are less than the clock 
period. Although this flaw in design should be picked up by simulators, they can lead to errors in the actual 
chip if either the delays are fairly close to the clock period or if the simulator assumes delays for a different 
technology. 
 
 

 
 
 

 

 

Design for testability 
 
In integrated circuits, it is essential to confirm the complete functionality of a chip in the shortest possible 
time. In the implementation of a prototype it might also be essential to isolate malfunctioning modules to 
identify the problem. Testing a chip by providing every combination of input can be very laborious and in 
most cases impractical. Hence the design should provide for a simple set of test vectors (set of input values) 
that would test for any anticipated failures. These anticipated failures dictate the fault model.   
 
One of the more common fabrication errors is the “stuck at low-high”. This refers to gates that are always 

stuck in one state and refuse to change state. Hence a common fault model allows for the toggling of all 
nodes in a design either directly or indirectly. This requires the design engineer to accommodate test 
circuitry in each module that will confirm, with a minimum set of input vectors, that all nodes in that module 
can toggle between the on and off values. 
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Fig 2.4.1: Potential race condition 
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2.2 – Frequency Divider  
 
The high level design in Fig 1.3.1 identified a high frequency crystal oscillator as the input clock. For our 
ASIC design a low frequency clock will be adequate. Let us assume that a 1KHz clock will meet our 
requirements. Further assume that our high frequency crystal oscillator generates a 32KHz clock. This will 
mean that we need to step this down to 1KHz to generate the internal clock signal that can be used by all 
the other modules within the ASIC. 
 
It turns out that a frequency divider is essentially a counter design much like what was discussed in section 
4.4 of the notes on Digital design. If you did the timing diagram exercise in that section, you will notice that 
each D-Flip-Flop divides the input frequency by 2. Hence to go from 32KHz to 1KHz, you need five D-Flip-
Flops as shown in Fig 2.2.1. 

 

 
 
 
Notice how we have added a “SET” line to the D-Flip-Flops. The SET line sets the output of each D-Flip-
Flop to a “1”. Based on the timing diagram for this counter you will see that once all the D-Flip-Flops are set 
to “1”, it will take a single clock cycle to flip the output of all the D-Flip-Flops to a “0”. This will confirm if we 
have a “stuck-at” problem with any of the D-Flip-Flops.  
 
Fig 2.2.2 shows the additional test circuit that will check for stuck at problems. A , B, C, D and E represent 
the states of each of the D-Flip-Flops. After the SET line is toggled, A through E should be set to “1” and F 
should be ON. The very next clock cycle should turn G ON. This will confirm that we don’t have any “stuck-
at” issues in the frequency divider module. 
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2.3 – Timer  
 
The high level design in Fig 1.3.1, identified a need to delay the pulse, coming from the scanner, indicating 
that an item was scanned. This delay was to account for the time taken by the EPROM to output the cost 
associated with the item that was scanned. The “ADDER” module uses this delayed signal to perform a 
cumulative addition. The actual value of this delay will depend upon the specifications of the EPROM that 
we choose. Here we will assume that the delay required is a minimum of 2ms. This means that a 2-bit 
counter (4 states or 4ms maximum delay at 1KHz clock) will meet the requirements. Assume that the pulse 
coming from the scanner will remain high for 5ms.  

 

 

 
 
Fig 2.3.1 illustrates the timing requirements. Our 2-bit counter will start counting at the first rising clock edge 
after the scanner pulse goes high. To do this we will use the scanner pulse as the clock enable line for our 
2-bit counter. In 2ms, we can have 3 rising edges and so we can go from state 0 to 3 anywhere between 2 
to 3 ms, depending on when the scanner pulse goes high. To ensure that the counter reverts to state 0 
before the next scanner pulse, we will tie the inverse of the scanner pulse to the reset line on the 2-bit 
counter. 
 
Fig 2.3.2 shows the design of this circuit. Notice how we pass the scanner pulse through a D-Flip-Flop that 
is clocked by an inverted clock line. This serves two purposes. First the flip-flop makes the scanner pulse 
synchronous and we are thus immune to glitches on this line. Second, by using an inverted clock line, we 
ensure that the clock enable line for our counter satisfies the signal hold time requirements very comfortably 
since it has an entire half clock cycle before the counter is going to change its state. Such an inverted clock 
line is also referred to as a 90 degree phase shifted clock.  
 
Since we have an active low reset line, we can conveniently use this latched scanner pulse to clear our 
counter to ensure it is at state 0, at the time the counter clock enable line is set. 
 
At the output, we again use the 90 degree clock phase shift technique to ensure that our delayed scanner 
pulse satisfies the setup and hold time requirements of the ADDER module. Notice also that we pass the 
output of the AND gate (that detects the state 3 on the counter) through a flip-flop to ensure that no glitches 
on this line ripple into the ADDER module. 
 
As an exercise, you can now redraw the timing diagram of Fig 2.3.1 to take account of the clock phase shifts 
being employed at the input and output ends of this design. Also re-design the circuit to detect “stuck-at” 
issues in the minimum amount of clock cycles. 
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Fig 2.3.1: Timing diagram showing delayed pulse 
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2.4 – Adder  

 
The “ADDER” module is going to be, by far, the most complicated module in our ASIC design. We will start 
the design by applying the top-down design technique that will help us breakdown all the tasks that need to 
be done to achieve the addition operation. Fig 2.4.1 is a high level design that identifies the building blocks 
that will be used in the design of the “ADDER”. 
 
First we will design a 4-bit binary adder. It will take as input, 2 sets of 4-bits along with a carry-in, and offer 4-
bits as output along with a carry-out. One set of 4-bit input will be tied to the EPROM output that gives us the 
cost of the grocery item that was just scanned. The other set of 4-bit input will be a feedback representing 
the current cumulative total. 
 
Since we are adding the cost of groceries, we would want to perform this addition in Base 10 arithmetic. The  
B_To_D converter module will convert the sum of the 4-bit binary addition into a decimal addition. For 
example, if the sum of the addition is 0x0B (decimal 11), it will convert this to a decimal “1” with a carry of 
“1”.  
 
The 4-bit Latch is what synchronizes the addition operation with the scanning operation. The “Transmit” line 
in the input of the Latch will be tied to the delayed scanner pulse and this line will be used to “enable” the 
latch. This means that when the “Transmit” line is set, at the next rising edge of the clock, what is at the 
input of the latch will be transmitted to the output and this output will get displayed on an LED as well as sent 
back to the adder in a feedback loop. Notice that the “Transmit” line has to coincide with a rising clock edge 
for the signal to be transmitted. This ensures that any glitches in the “Transmit” line don’t affect the “ADDER” 
module. 
 
Finally we will place four sets of these “ADDER” building blocks in parallel to have the 4 decimal digits as 
stipulated in the requirements. 
 
What we have done in Fig 2.4.1 is to design using a top-down approach. This has helped us isolate the 
tasks into individual modules, much like the technique we employed when we come up with the high-level 
design. Once the tasks are identified the bottom up approach is more efficient. 
 
To design a 4-bit binary adder, we first need to design a 1-bit binary adder. A 4-bit binary adder is just a 
combination of four 1-bit adders. The 1-bit (and hence the 4-bit) adder is a simple combinational logic circuit.  
 
Following this, we will design a B_To_D converter module, with a simple combinational logic circuit.  
 
Before we design the 4-bit Latch, I will discuss and design another fundamental digital circuit building block 
known as a multiplexor and a de-multiplexor.  
 
And finally we will design the latch that uses multiplexors along with all the other building blocks we have 
used previously. This will be a sequential circuit. 
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Fig 2.4.1: High level Adder Design 



Version 1.0 24 

 

1-Bit Adder 
 
A 1-bit adder accepts 2 1-bit inputs along with a Carry-In and outputs a 1-bit SUM along with a Carry-out. 
 
The truth table for this circuit is given in Fig 2.4.2. 
 
 

Input A Input B Carry-In SUM Carry-Out 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

 
Fig 2.4.2: Truth Table for a 1-bit Adder 

 
Using the Karnaugh map design technique we learnt previously, we will come up with the circuit in Fig 2.4.3 
to implement the truth table in Fig 2.4.2. 
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Fig 2.4.3: Design for a 1-bit Adder 
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4-Bit Adder 
 
A 4-bit adder is essentially a combination of four 1-bit adders in parallel as shown in Fig 2.3.4. The inputs 
are A<0:3>, B<0:3> and a Carry-In. The outputs are SUM<0:3> and a Carry-Out. Note that we feed the 
Carry-Out of each bit into the Carry-In of the next more significant 1-bit adder. Also note that this is a purely 
combinational circuit and that we can expect glitches in the output. However we can accommodate these 
glitches because of the 4-bit Latch that we have accounted for in our overall ADDER design. 
 
The Carry-Out line from the 4-bit adder will be fed into the Carry-In line of the next more significant 4-bit 
adder. The Carry-Out line from the most significant 4-bit adder will be used to signal an overflow in addition. 
Recall that the requirements stipulated a maximum price of $99.99. 
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Fig 2.3.4: 4-bit Adder 
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B_To_D Converter 
 
Since the end user of our design is going to expect the cost to be displayed in base 10 arithmetic, we will 
have to convert our 4-bit binary addition into a decimal number. This conversion will also impact the carry-
out line that will be fed into the next more significant 4-bit adder. For example, if the 4-bit binary addition 
results in a 0xF, the carry-out line would have been a zero. However, once the sum is converted to decimal, 
the sum would change to “5” and the carry-out would be set to “1”.  
 
The Truth Table for the B_To_D converter is shown in Fig 2.3.5 below. The input in this truth table are 
prefixed with “B_” (for binary) and the outputs are prefixed with “D_” for decimal. 
 
 
B_S<3> B_S<2> B_S<1> B_S<0> B_C D_S<3> D_S<2> D_S<1> D_S<0> D_C # 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 1 0 1 

0 0 1 0 0 0 0 1 0 0 2 

0 0 1 1 0 0 0 1 1 0 3 

0 1 0 0 0 0 1 0 0 0 4 

0 1 0 1 0 0 1 0 1 0 5 

0 1 1 0 0 0 1 1 0 0 6 

0 1 1 1 0 0 1 1 1 0 7 

1 0 0 0 0 1 0 0 0 0 8 

1 0 0 1 0 1 0 0 1 0 9 

1 0 1 0 0 0 0 0 0 1 10 

1 0 1 1 0 0 0 0 1 1 11 

1 1 0 0 0 0 0 1 0 1 12 

1 1 0 1 0 0 0 1 1 1 13 

1 1 1 0 0 0 1 0 0 1 14 

1 1 1 1 0 0 1 0 1 1 15 

0 0 0 0 1 0 1 1 0 1 16 

0 0 0 1 1 0 1 1 1 1 17 

0 0 1 0 1 1 0 0 0 1 18 

0 0 1 1 1 1 0 0 1 1 19 

 
Fig 2.3.5: B_To_D Converter Truth Table 

 
Note that I have only accounted for states 0 through 19. This is because the prices that are going to be input 
into the adder are going to be decimal numbers. The maximum decimal number we use in any 4-bit adder is 
“9”. So the highest output we expect will be when we add 2 nines with a carry-in. This will result in a sum of 
“19” and that is highest state in our Truth table. While it is useful to add all the possible states and display 
errors if these unanticipated states manifest, it would cost us a lot more gates to implement them. 
 
I will leave the conversion of this Truth Table into a gate design as an exercise. Note that this easily done 
using freely available design software on the internet. But it can also be done manually using Karnaugh 
maps.  
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 Multiplexors (MUX) and De-Multiplexors(DE-MUX) 
 
Before designing the latch circuitry, I will introduce yet another very common building block used in digital 
design, much like gates and flip-flops. They are known as multiplexors and de-multiplexors (or MUX and 
DEMUX for short). 
 
A MUX takes multiple inputs but has only one output. The output will be one of the inputs into the MUX. 
Which input is chosen to be the output will depend on a special input known as a “selector”. For example, for 
a 2-input MUX, you need a 1-bit selector. When the selector is low, one of the 2 inputs will pass through to 
the output and when the selector is high, the other input will pass through to the output. Fig 2.3.6 shows the 
Truth Table for a 2-input MUX. Notice that when the select line is low, the output is always the same as the 
Input A. When the select line is high, the output is always the same as the Input B. 
 
 

Input A Input B Select Output 

0 0 0 0 

0 1 0 0 

1 0 0 1 

1 1 0 1 

0 0 1 0 

0 1 1 1 

1 0 1 0 

1 1 1 1 

 
Fig 2.3.6: Truth Table for a 2-input MUX 

 
 
I will leave it as an exercise to translate the above truth table into a gate design. For our purposes here, we 
will from now on use the block diagram in Fig 2.3.7 to represent a MUX. 
 
 

 
 
 
A DE-MUX is the inverse of a MUX. It takes one input and has multiple output lines. The input line is 
reflected in one of the output lines based on the value of the selector line. As an exercise you can create a 
Truth Table for a DE-MUX and subsequently convert your Truth Table into a gate design. 
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Fig 2.3.7: MUX Block Diagram 
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4-Bit Latch 
 
Fig 2.3.8 shows the design for a synchronous 4-bit Latch.  
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Fig 2.3.8: 4-Bit Latch 
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The 4-bit input into the latch is fed into 4 MUXs that is selected by the “TRANSMIT” line. The “TRANSMIT” 
line will be tied to the delayed scanner pulse that we designed earlier. When the “TRANSMIT” line is high 
the 4-bit input into the latch is the output of the MUXs. When the “TRANSMIT” line is low, the output of the 
MUXs are the same as the output of the D-FF, since the signal is fed back.  
 
Note that when we are in “TEST” mode, the “TRANSMIT” line is always high because the “TEST” line is the 
selector used to choose between the incoming “TRANSMIT” and a constant high signal level (+5V). This will 
help test the circuitry for stuck-at problems without being dependent on an incoming “TRANSMIT” line. 
 
Note that this is a synchronous circuit since the output of the D-FF is only set on the rising clock edge. 
Because of the 90 degree phase shift technique we employed in the design of the delayed scanner pulse, 
the TRANSMIT line is guaranteed to withstand the “set up” and “hold” time constraints at the time the rising 
clock edge occurs. 
 
With the design of the 4-bit Latch we have completed the design of the ADDER by addressing all the 
modules identified in the high level ADDER design of Fig 2.4.1.  
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3.0 – Integration and Testing 
 
Once the module design phase is completed, we move into the integration and testing phase. Here the input 
and output interfaces to each module is tied to other interdependent modules and then the integration 
engineer would simulate the functionality of the entire system (in software) to confirm that the overall design 
lives up to the original statement of requirements.  

Once the simulation results prove satisfactory, the design in the form of a “net list” will be sent to an ASIC 
manufacturing plant. During the manufacturing process, the “net list” will be translated to metal contacts in a 
pre-build gate array of transistors on a silicon die. 

The chip is then received from the manufacturing plant and then tested for stuck-at issues and functionality. 

In this third and final section we will cover some of the details of these aspects of integration and testing. We 
will limit the discussion to modules within the ASIC. Integration issues with the 3rd party modules outside the 
ASIC will be considered beyond the scope of this set of notes. 
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3.1 – Putting the pieces together 
 
Fig 3.1.1 shows all the ASIC modules integrated with all input pins to the left and output pins to the right. 
 

 
 
Note that to add test circuitry to the Frequency Divider, Scanner Trigger Delay and the BCD To 7-Segment 
modules would consume additional I/O pins and gates. Hence I have avoided them here. 
 

Fig 3.1.1: ASIC Modules integrated 
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The Adder module, however, provides for a “Test” line. This line effectively simulates a “Transmit” line active 
behavior. This will enable us to test the Adder module, without depending on a pulse from the scanner. By 
manually pulsing the “High Frequency Clock” input, we can receive clock rising edges on demand. This 
capability combined with the “Test” line and input cost lines, allows us to test the Adder independent of the 
other modules. 
 
Note that we have used 2 Input pins for power and ground. This brings the total number of input pin 
requirements to 21. And the total number of output pin requirements is 28. 
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3.2 – Chip manufacturing process 
 
Way back in 1916, a Polish Chemist by the name of Jan Czochralski, accidentally dropped a pen in a 

container of molten tin. He quickly removed the pen and found a thin thread of solidified metal hanging from 
its tip. He then replaced his pen with a capillary and found that the thin thread was a single crystal.  
 
The Czochralski method of creating a single crystal is the starting point in the manufacture of semi-
conductors. The process begins by dipping a “seed” semi-conductor crystal, mounted on a rod, into a 
container filled with molten semi-conductor (usually silicon). When the rod is pulled upward and rotated 
simultaneously, a cylindrical piece of silicon crystal is formed. This is known as an ingot. Ingots vary in 

dimensions but usually range from one to two meters in length and about 300 millimeters in diameter. 
 
The ingots are sliced into thin wafers that are typically in the range of 0.75 millimeters. These wafers are 
polished into a very flat surface and referred to as “virgin wafers”.  

 
The virgin wafers are then oxidized by exposing the wafer to high heat and gases. This causes a growth on 

the virgin wafer. The process is similar to building rust on a metal. Then the oxidized wafer is coated with a 
photo-resist material (material that is sensitive to light). Then masks representing the digital design are 

used to carve out the design by shining light to the photo-resist through the mask. The exposed photo-resist 
and the underlying oxidized layer are then etched away to reveal the pattern of the mask on the oxidized 

wafer. 
 
An insulation layer is then applied and another coat of oxidized layer is formed. The process of masking and 
etching is repeated with the next mask representing the design. The two layers are then bombed with P-type 
or N-type ions to achieve doping. Then a metal is dropped to fill holes that were left open between the 2 

layers to make electrical connections between the layers. 
 
The process is then repeated for as many times as there are masks. Note that each wafer can 
accommodate hundreds of chips. The chips are cut from the wafer once the above process is completed, 
along the crystal cleavage to form a die. The die’s I/O pins are connected to chip package pins and then the 

chips are ready for shipping. 
 
Note that chip manufacturing laboratories have to meet certain minimum “Clean Room” standards since 
even tiny particles of dust can negatively impact the manufacturing process. The International Standards 
Organization currently defines 6 classes of clean rooms – Class 1, Class 10, Class 100, Class 1000, Class 

10,000 and Class 100,000. These classes refer to the maximum number of particles bigger than half a 
micron in 1 cubic feet of space. 
 
In ASIC design there are generally three manufacturing possibilities – Standard cell, Gate Array or Full 

Custom. 
 
In the Standard cell approach, the designer uses a high-level design language to describe the module level 

functionality. Software then converts this to high-level design such that it uses well known standard cells 
whose electrical characteristics are well established. These standard cells are then placed as they would 
appear on the chip and routed to connect all interdependent modules. This is then transformed into the 
masks required for fabrication. 
 
In the Gate array approach, the designer uses a generic predefined wafer which has transistors already 

formed but not yet connected using the metal. The design defined the metallization required to achieve the 
final implementation. While the manufacturing costs may be lower using the Gate Array method, the 
transistor utilization is also lower because of placement and routing limitations. Gate arrays have mostly 
been replaced with Field Programmable Gate Arrays (FPGA). These are software programmable and hence 
reduce implementation costs considerably. 
 
The Full custom design allows one all the flexibility on gates, placement and routing. This approach can be 

used by ASIC as well as generic products. However it can be expensive to manufacture and will require 
considerably larger amounts of testing resources. 
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3.3 – Testing the ASIC for stuck-at problems 
 
As discussed previously, one of the most common errors in chip manufacturing is that a transistor can get 
“stuck” in a state – either low or a high. To catch this early in the test cycle, one of the first things that is 
done when a chip is received for the chip manufacturer is to quickly see if we can toggle as many transistors 
as possible. 
 
In our design, we allowed for a “Test” line into the Adder module. By turning this “Test” line on, we can feed 
various input costs and confirm that all our latches are toggling at the output. We can manually clock 32 
pulses at the “High frequency Clock” input to get a rising clock edge into the Adder module.  
 
Feeding the Adder with an input of “7777” in the first clock cycle and then feeding it with a “2223”, should 
confirm if 3 of the 4 bits in the 4 bit adder are capable of toggling. This test case (also known as a test 
vector) forces the lines to go from a “1” to “0”.  

 
You can identify similar test vectors that test as many nodes as possible within each module. Even though 
we don’t have a “Test” line into the Frequency divider or the Scanner pulse delay modules, you can 
indirectly confirm the toggling of nodes within these modules by confirming that the Adder is behaving the 
way it would be expected while acknowledging signals from the other modules. 
 
Note that if there are any stuck-at issues, the design is sent back to the manufacturing lab and further test 
resources are not expended at this juncture. 
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3.4 – Functional Testing of the ASIC 
 
In Section 1.2, we outlined the four requirements that will be provided by the ASIC design as follows;   
 

 Ability to interface with EPROMS to read cost of an item. 

 Ability to perform cumulative addition as each item is scanned. 

 Ability to display cumulative sub-totals on a 7-Segment LCD (Liquid Crystal Display) unit with 4 
digits. 

 Ability to interface with a Credit card machine to make charges. 
 
 
For each requirement, the test engineer will come up with a “Test Case” to validate that the requirement is 

satisfied.  
 
For the first requirement, our design allows for 16 input pins to interface with an EPROM. The test engineer 
can tie these pins to de-bounced switches (switches that can generate a “clean” signal) and verify that a 
manually generated clock pulse, causes the input presented by the de-bounced switches are reflected at the 
output of the ASIC. 
 
The second requirement involves testing the addition functionality. The test engineer will have to come up 
with a minimum set of cost values that best covers all boundary conditions and confirm that the output of the 
ASIC reflects the sum of the inputs provided thus far. 
 
The third requirement is partially tested in the previous tests as the LCD was our view into the output of the 
ASIC. However, for completeness, this test case must cover the unique set of input vectors that will cause 
each of the LCD digits to display the digits 0 through 9. 
 
The fourth requirement is covered by the RESET line into the ASIC. In our high level design the peripheral 
Credit Card processor, would pulse this line once the processing is successful. This will cause the ADDER 
output to be reset. This can be manually tested by providing a pulse to the RESET line and ensure that the 
output of the ASIC is then set back to zero. 
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4.0 – Conclusion 
 
In this set of notes on ASIC design we have covered adequate ground on a full product development cycle 
to familiarize the student with both technical and business aspects of product development. We have also 
applied the knowledge gained previously in the notes on Digital Design to accomplish practical modules, 
such as Adders and Frequency Dividers and detailed how such individual modules can be integrated in a 
way that they accomplish a set of end user requirements for a product. We have discussed the two common 
design approaches namely the top-down and the bottom-up designs and when a particular approach is 
warranted. In passing, we have also mentioned the various job titles associated with the various tasks that 
were identified in product development, so as to give the student an appreciation for various job 
descriptions.  

This sets the stage to introduce the student to the general purpose microprocessor and the application of 
software to realize end-user requirements. Future modules in the Accelerated Learning Series will cover 
topics in these areas. 

 

 

 

 


